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Problem 1 Residue integration

In this problem we use residue integration to calculate observables from the Green's function. We
consider a free Fermi gas with spin S in continuum,
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with Fermi wavevector of length k.

(2.a) Show that the homogeneous density can be written as:
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and the homogeneous kinetic energy density as:
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Here G(x,t) denotes the two-particle Green's function.

(2.b) Write out Fourier transforms to show that:
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and find a similar expression for (T'(x)).
(2.c) Perform residue integrals to show that in d = 3 dimensions:

Ve A 3

(p(x)) = (25 +1) O (T'(x)) = erlp(@)). (5)

Here V5 is the volume enclosed by the Fermi surface at the Fermi energy cp.
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Problem 2 Spin coherent states

In this exercise, we introduce so-called spin-coherent states, which can be used to define path

integrals of quantum-spin Hamiltonians. Spin coherent states are defined by rotating the fully
polarized state |S, S) — with S?|S,S) = S(S + 1)|5,S) and 57|5,5) = 5|5, S) — by angles ¢

around the y-axis and ¢ around the z-axis:
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Here €2 = (sin 6 cos ¢, sin 6 sin ¢, cos ) is a unit vector, and x is a gauge freedom adding an overall

phase. Their following properties will be useful:
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where d€2 = df sin Od¢, and:

Q) = (%)S e~ 4 = 2arctan {tan (¢ 5 ¢/) zzz&z i Z;ZH +x—x. (8)

(3.a) Construct the spin-coherent path integral, i.e. show that:
7 = trToe I ar ) / D7) exp (—S[Q(r)]) (9)

with the action:
B .
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Here j labels different spins in a lattice, and we defined

exp [1Sw([Q]] = H(Q(Tn +07)|2(7)), T, = ndt, 67 = B/N. (11)
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Which boundary conditions does €2(7) in the path integral obey?

(3.b) Simplify the contribution w[€2] to the action by assuming continuous differentiable trajectories
and show that:

B
w[Q] = —/ dr (0;¢) cos[f] + O x. (12)
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By choosing the gauge convention x;(7) = 0, simplify the result further and show that:
bs
w[Q] = —yg d¢ cos(6). (13)
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Discuss how this Berry-phase contribution is geometric and does not depend on the explicit
time-dependence of ¢(7).



(3.c) Construct the effective action .S for a Heisenberg interaction:
(i.4)
Hint: Show first that - S|Q2) = S|Q).

(3.d) Discuss on generic grounds and using the above path-integral formalism why S — oo
corresponds to the classical limit.
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