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Problem 1 The Cooper pair wavefunction

In this problem we derive Cooper's expression for the binding energy of a single Cooper pair.
Consider the following Hamiltonian,

H= Z €k éLUék,a + Hing (1)

k,o

as discussed in the lecture.

(2.a) Start from a Fermi-sea |F'S) and make Cooper’s ansatz for a state with two more electrons,

|\Ij> = AHFS> AT = Z Pr é;wéik,y (2)
k

Show that (kr is the Fermi momentum):

W)= 3 i k), with [kp) = e, | FS). (3)
|k|>kp

In the following exercises we will assume that the Fermi energy e = e(kp) = 0.

(2.b) Assume that |T) is an eigenstate of 7, i.e. #|¥) = E|¥). By comparing components of
this vector equation on both sides, show that

E¢ =2er ¢+ >, (kp[Hi|Kp) di (4)

k| >kp
(2.c) Simplify the interaction by making Cooper’s seminal ansatz,

—qo/V <
90/ ’51@\, |8k ! Wwp (5)
0 else

Vk,k' = <kP|7:[int|k/P> = {

Here wp describes a narrow energy shell and V' = L¢ denotes the system’s volume. Using
this simplified interaction, show that Eq. (4) becomes:

b= g (6)
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(2.d) From Egq. @ derive a self-consistency equation for the energy E of the Cooper pair! Take
the continuum limit by replacing - > 0<e, — N(0) o0 de, where N(0) is the density of
states per spin per unit volume at the Fermi energy, and show that:

wD 1
1 =goN(0 d 7
wNO) [ e = @

(2.e) Solve Eq. (7)) for E, by assuming 2wp — E ~ 2wp. Show that:

E = —2wp ¢ N, (8)

Problem 2 Green's functions
In this problem we calculate some important Green's functions which we saw in the lecture.

(1.a) Fora bosonic field ¢, = /7i/(2mw,) <dq + dT_q> and a Hamiltonian Hy = 3°
show that

qWa (d;dq +1/2),

h

D(q,t) = —i(0|T dq(t)d_q(0)]0) = —izqu [0(t)e ™t + (—t)e™a"] (9)
and " . .
Dla,v) = 2mwg {1/ — (wq — i071) + —v — (wg — 2'0*)} ’ (10)

(1.b) For a fermionic field ¢x, and a Hamiltonian Ho = Zkggkélﬂékﬂ with ground state
_ Af
WJO) = Hg7|k|<kF Ck7g|0>, show that

—i0(|k| — kp)e=st ¢ >0
i0(kp — k) t<0
(11)

Go‘,o’(k> k,7 t) = _i<w0‘7'ék,a<t)é;[ql,o-/(0)|¢0> = 6k,k’60,(r’ {

and

1
G(k,w) = . 12
(e, ) w — ek + 10Fsgn(eg) (12)
Here kr denotes the Fermi momentum.
Problem 3 Using Grassman integrals
In this exercise, we use Grassman integrals to prove the following identity:
A B _

det ( c D ) =det [A— BD™'C] det D, (13)

for square matrices A, D of size N x N and M x M respectively; B and C' are matrices of
corresponding sizes. To this end, recall first that

det ( é g ) :/ ﬁ[lda;daj ﬁdﬁ;‘dﬁk exp {(a*aﬁﬂ ( é g ) (g)} (19

with vectors of Grassman numbers o, o, 3, 5* of lengths N, N, M, M, respectively.



(2.a) Separate the expression Eq into an inner and an outer integral, by writing

A B o
det ( c D ) :/ Hdajdaj exp[—a*Aa] Y[a*, al,
j=1

and find an expression for Y[a*, a] as a Grassman integral over * and [3.

(2.b) Solve the inner integral and show that its result is given by

Ve, o] = det (D) exp [o*BD'Cal .
Hint: Use the following Gaussian Grassman integral:

/H dnjdn; exp[—n*An + j*n +n"j] = det(A) exp[j* A7),
J

for matrix A and vectors of Grassman numbers j and j*.

(17)

(2.c) Use the result from (2.b) to solve the outer integral in (2.a). This way, show the identity

Eq. (13).
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