Prof. G. Buchalla 19. Juni 2023

Übungen zu T3p Elektrodynamik im SoSe 2023 Blatt 10

Aufgabe 1: Kovariante Formulierung

Die Lorentzkraft lässt sich in folgender, kovarianter Form schreiben:

$$m\frac{d^2x^{\mu}}{d\tau^2} = \frac{q}{c}F^{\mu\nu}u_{\nu} \ . \tag{1}$$

Beweisen Sie (1) zunächst für die räumlichen Indizes $\mu = i = 1, 2, 3$ und berechnen Sie dabei explizit die Komponenten F^{i0} und F^{ij} . Betrachten Sie anschließend die Gleichung für $\mu = 0$. Zu welcher Beziehung ist diese äquivalent?

Aufgabe 2: Aberration

Das Inertialsystem S' bewege sich mit der konstanten Geschwindigkeit $\beta \mathbf{e}_z$ relativ zu einem Inertialsystem S. Die beiden z-Achsen der Systeme seien parallel zueinander orientiert, sodass $\mathbf{e}_z||\mathbf{e}_{z'}$. Vom Ursprung des Systems S' werde nun ein Lichtstrahl unter dem Winkel θ' zur z'-Achse emittiert. Unter welchem Winkel θ erscheint der Strahl im System S?

Hinweis: Betrachten Sie den Wellenzahlvektor $k^{\mu}=(\omega,\mathbf{k})$ mit $\omega=|\mathbf{k}|$ in beiden Systemen. In welche Richtung zeigt \mathbf{k} ?

Aufgabe 3: Bewegter Draht

Ein unendlich langer Draht von vernachlässigbar dünnem Querschnitt befinde sich im Inertialsystem S' in Ruhe und trage die homogene Linienladungsdichte λ . Das System S' und damit auch der Draht bewege sich gegenüber dem Laborsystem S mit einer Geschwindigkeit \mathbf{v} parallel zur Achse des Drahtes.

- a) Geben Sie das elektrische Feld \mathbf{E}' und das magnetische Feld \mathbf{B}' im Ruhesystem des Drahtes in Zylinderkoordinaten an.
- b) Bestimmen Sie die Komponenten der elektrischen und magnetischen Felder im Laborsystem unter Verwendung der Lorentztransformation.
- c) Wie lauten Ladungs- und Stromdichte des Drahtes in seinem Ruhesystem S' und im Laborsystem S?
- d) Berechnen Sie direkt aus der Ladungs- und Stromdichte im Laborsystem die entsprechenden Felder und vergleichen Sie das Ergebnis mit b).

Hinweis: Anstatt die Felder in b) direkt zu transformieren, können Sie auch das Viererpotential A'^{μ} betrachten, um A^{μ} und damit **E** und **B** in S zu finden.