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Tangent space methods II

We consider time evolution using 'time-dependent variational principle' (TDVP)

[Haegeman2016, App. B] N
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if we insist on using MPS with fixed bond
dimensions, left side has following form:

Each term differs from | @({7) by precisely one site tensor or on bond tensor, so left side is a
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Left and right sides of (4) are structurally consistent. To see this, consider bond {
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Right side of (4) requires tangent space projector. Consider its form (5.25):
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The three terms with £ = f L =2, ¢ =4+ , appliedto H VB (4)7 ), yield

matching structure of (7). Thus, P"“ , applied to # [ *{/(*)) , Yields terms of precisely the right structure!

To integrate projected Schrédinger eq. (4), we write tangent space projector in the form (5.26):
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Right side is sum of terms, each spegifying an update of one ‘lf': or ZF}_’ on the left. Eq. (4) can

be integrated one site at a time, by defining the updates through the following local Schrédinger equations:
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In site-canonical form, site { involves two terms linear in C’1 : 1 C ¢ (t‘) = He C¢ “,) (13)
-1 H'S
Their contribution can be integrated exactly: replace C ¢ (+) by C, t+1)= ¢ Ct @) (o
forward time step
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In bond-canonical form, site { involves two terms linear in At : i/\.!. () = - Hl At ({») ()
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backward(!) time step

“ 08 < b
In practice, e"’ Hn t Ct and e "Ht E A g are computed by using Krylov methods.

(s
Build a Krylov space by applying H‘z multiple times to Cp_ , set up the tridiagonal representation [HQ]k

r¢lov
of H}" in this basis, then compute the matrix exponential in this basis, and apply result to € . 3
Likewise for HL and Ag.
To successively update entire chains, alternate between site- and bond-canonical form,
propagating forward or backward in time with H lzs or Hf , respectively:
Cl (t) := 1
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until we reach first site, and MPS described by

C, (t+2218, l{--rz'z),..&z (Ex27) @)

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG),
that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback,
a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

A scheme for doing 1-site TDVP while nevertheless expanding bonds, called 'controlled bond expansion (CBE),
was proposed in [Li2022].
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2. 2-site projectors P

TS-11.2

The construction of tangent space W'sand its projector P“ can be generalized to n sites [Gleis2022a]

We focus on W = z (but general case is analogous). Define space of 2-site variations:

\y = span of all states \l}') differing from \1];) on precisely 2 neighboring sites

' 2.sites
= s 1B = fﬁ ——y— Lehz-0] 0
Le2

formal definition: = Sram { 1 ( ?‘Qz ) | £ e[ ',f,’-l ] ]I ®
image

Recall: Aqs ? sites

local 2s projector: Pg_ = ,’:J%;%D \ \ (_"Lf’__‘:j 3

Le {1, £-1) (TS-1.4.9) !

I\ 25, . .
Global 2s projector s , such that N = (? = ) , can be found with a Gram-Schmidt

scheme analogous to our construction of P(s , see [Gleis2022a]:

compare (TS-1.5.22)

Y
st,.: 7 P £ " . 2 P for any 26{) ,f,—l]
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All summands are mutually orthogonal, ensuring that (P zs) = et , and that ¥ B0 =

(65

Alternative expression:

L

’l

This projector is used for 2-site TDVP (see TS-11.3)

Orthogonal n-site projectors

For any given MPS
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3. 2-site TDVP  (optional) TS-11.3

[Haegeman2016, Sec. V & App. C]

2-site tangent space methods are analogous to 1-site methods, but use a 2-site projector. There is a
conceptual difference, though: the main reason for using 2-site schemes is that they allow sectors with

new quantum numbers to be introduced if the action of H requires this. However, states with different
ranges of quantum numbers live in different manifolds, hence this procedure 'cannot easily be captured in a
smooth evolution described using a differential equation. However, like most numerical integration schemes,
the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to
formulate an analogous two-site algorithm'. [Haegeman2016, Sec. V]. In other words: the tangent space
approach is conceptually not as clean for the 2-site as for the 1-site scheme.

Schrédinger equation, projected onto 2-site tangent space, now takes the form
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£ Cd
o b | |- 7 ah | d
| {1 {=2 L
This yields [compare (1 tl)] ,%_5 sz
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Right side is sum of terms, each specifying an update of one 4, or '4': on the left. Eg. (4) can

be integrated one site at a time, by defining the updates through the following local Schrddinger equations:
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Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time:

< .7 s 2$
In 2-site-canonical form, site £ involves two terms linear in ‘S’Z 1 ?2‘ ()= H e ¥, B @

s _ {
Their contribution can be integrated exactly: replace 1{’2‘({) by 1"!. (t+1)= ¢ LMt q’ H

forward time step
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In 1-site-canonical form, site /I involves two terms linear in 'Lﬂsﬂ: t 'l}';fr (t) = - Hc.“ t}«(':l ) @

(s h
Their contribution can be integrated exactly: replace % ’ .h(%) by 1(/ o - 1)= e y 2*‘—5 ‘h,,, (i3)
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(s )
Their contribution can be integrated exactly: replace % M(f) by 1(/1“ t-1)= ¢ ¢ 2*“5 SLH, i3)

backward(!) time step

To successively update entire chains, alternate between 2-site- and 1-site-canonical form,

¢
propagating forward or backward in time with H g or (’ffaS , respectively (analogously to 1-site scheme).

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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4. Energy variance [Hubig2018] TS-11.4

When doing MPS computations involving SVD truncations of virtual bonds, j
the results should be computed for several values of the bond dimension, D ,

to check convergence as D — © . Often it is also necessary to extrapolate the
resultsto D = @ , e.g. by plotting results versus /1)  or some power thereof.

!

/D
However, for some computational schemes, it is not a priori clear how the observable of interest scales
with D , nor how it should be extrapolated to D=w an example is ground state energy when computed
using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient
scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

2_ a 7— E
Ag:= “ (H-E )1(," S <1(»[(|—| - E) [4Y (= zero for an exact eigenstate) (1)
A a
L .
= (ylH"1y> - E?; with E = {§JH %) () &E;“tt
Then extrapolations can be done by computing quantity of interested for several D, © AE
but plotting the results via /A, and extrapolating to Oz — ©
exacf
If quantity of interest is energy, then extrapolation is linear, E g (a E) = Eﬁ + Qa-Ag ()

Computing <1H i:‘[ lf l}) directly is costly for large systems with long-ranged interactions,
such as 2D systems treated by DMRG snakes. Also, computing A¢  as the difference
between two potentially large numbers is prone to inaccuracies. [Hubig2018] found

a computation scheme in which the subtraction of such large numbers is avoided a priori.

Key idea: use projectors PY- onto mutually orthogonal, irreducible spaces ‘\) nE

L
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Recall (2.11): _[[\] = j[f = Z ’[3""‘- P"‘L PV\(_L - Su PM' -
N=0 / .
completeness (&) orthogonality
with  P°5 = [P5<® ©
.16) £ L@17) L
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, £
Insert completeness into (@) a W L -
definition of variance: Ag = yl(u-¢€) Z‘;f (G-ety = 2. ag (3
w=o

Now two crucial simplifications occur:
oL & “ -

A = Lel(H-eNI(G-cY) 1g) = (E-eME-€) =
g PG~ £Y) 1) Y€ - E) o @
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oL 6 A -~
A = Lyl(H-ENHI(G-CY) 1) = (E-ENE-€) = o @
(g,) po+ largest contribution to variance cancels by construction!
no>o

A “l A et G n>o (5,6)
A = Lel(H-€NF (d-ey)1gy = LU P™HIyY | since POy 2 W

T (0

In practice, approximate A by the first two nonzero terms:

A & Ag = Ay @ = | Ll 0P H 1Y) « GldpH gy @

A A
(11) is exact if longest-range terms in H are nearest-neighbor, because then p("‘%)—l— H hk) = D

(e3)
Explicit computations:
@16 £ 2
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3 Dd-D

We would like to avoid computing Al explicitly, because of its large image dimension.
d
. oo . , i - (1
So rewrite, using isometry condition for discarded sector:
and completeness of kept together with discarded isometries: 43 = ’ ~ %‘ G2
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