Tangent space methods 1 TS-1.1

1. Motivation: why is tangent space useful?

tangent space
of MPS having one /\
> updated tensor
Tangent space: spanned by vectors /
tangent to curves running within a

smooth geometric structure. M

Higtmo)

P'S A\ (meny

\v full Hilbert space
of dimension d

~

space of MPS with
MPs specified dimensions

Basic idea [Haegeman2011]:

Consider Schrodinger equation: 2 % |’§ ) = HDY 0

If a small change in an MPS \1:1:‘7 is to be computed during

time-evolution with a small time step, this change lives in the 'tangent space' of the manifold defined by
the MPS, spanned by all states obtained ,Igy 'one-site (1s) variations of RV , i.e. by changing on[y

one tensor. Thus construct a projector P‘5 onto this space, and do time evolution using 1?’ S H .

P 41Ty & SLTREIEN (2)

Basic insight: 'If you need to do a projection, do that at the outset, and then work |
in the projected space, without further approximations!' '

This is a very fundamental and general idea. It is applicable to Hamiltonians with hopping T TET
or interactions of arbitrary range(!) (which is important for applications to 2D systems,
treated via 1D snake paths). It has been elaborated in a series of publications:

[Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.
(For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Lubich2015a] Concrete, explicit formula for tangent space projector. < Breakthrough result!

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

[Gleis2022a], [Gleis2022], [Li2022] Research performed in the von Delft group.

This lecture follows [Gleis2022a] for construction of tangent space projector, and [Haegeman2016],
for discussion of time evolution using the time-dependent variational principle (TDVP).
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2. MPS canonical forms

TS-1.2
Consider i-site MPS with open boundary conditions: 1‘1 “
L '1;(
- 6 6 6.
My = g MMt Mg + PR IENES ()
1 L rd ‘ff
where M % is matrix with elements *6¢ of dimension D D with Dy =D, =
! 2 F ' - ¥ ve ° 2
shorthand: M = (Hl S, M&) € M space of tensors with specified dimensions
Gauge freedom: l’qu'D is unchanged under 'gauge transformation' on bond indices:
~ Cand Y -
W My s U My - 114, $ » ﬁ_“ f_’— i 61"' & ﬂii
b T 1 [ [ I ®
M e f - Myt = ®
1 = g (e Sz ‘ io - &t = 4

with 6 ) € SL ( 'Dgl C) group of general complex linear transformation in :Dl dimensions

space of MPS with

space of

tensors ﬁPS specified dimensions

of specified

dimensions lq'L'ﬂ b full Hilbert space
of dimension d N

‘orbit' of tensors |
specifying same state of I l}'fq 1
due to gauge freedom

Mﬂ?s is a differential manifold, since it depends smoothly on the tensors in M)

[Haegeman2014a] discusses this aspect in detail. In our discussion, though, it plays no role.

Gauge freedom can be exploited to bring MPS into site- or bond-canonical form:

Bond-canonical:

A, A A\ %w
\1[»["\]) = vy 1 ?IAC; 7 S"- = \‘BL> ‘ﬁ& >ﬂ+| N)ﬁl“?

Se e
b
\WxK>£ @SK‘ >z+: Yy = A9
with AL AT - ﬂ_K) C]__: = { , AS A = dingond v A (s

¥ K I)
56‘&6 _ﬂ_ ) = 3 , 3+‘ &6 = A(‘k&mﬁl \‘f BL (6)

requiring this fixes gauge uniquely

(6)

1

{' ‘I’uZ 1;, %) @Q I.g form orthonormal bases for 'kept' (K) subspaces representing left- and right parts
of chain.
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1-site-canonical:
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2-site-canonical:

A C & B e
bttty = ‘i_‘t—‘r"?"‘(’_r*‘ 129, Mu%)@p;[%“) Re

— e

\w“% \ \ ‘K>2*L
Relation between 1-site- and bond-canonical: th's = C ] = A ? /\ g = /\ 2o %l (o)
Relation between 1-site- and 2-site-canonical: \.‘/zs = Ae Ce.;. = C 2 Bl“ (1)
Matrix elements of Hamiltonian, represented as MPO:
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3. Kept and discarded spaces TS-1.3

A, A Ay N By B B2
“ - \ 24 e+

) TDWDIDo«gaD(DrDY_“
for simplicity: assume all virtual . ‘e Fer »
bonds h di ion, D

0oNnas nave same dimension \WKK)Q [®F>£_H
Definition of kept spaces:
left 'kept' (K) space of site [ - VK = 5 % \ fl;)K ) z c v ®\ )
< Q = fa.,\ T | ®- .. 2

right 'kept' (K) space of site { : W;H = $@a.\ ‘l ‘@?ﬁzﬂ lal \V.?,H@ ®\Iz (»

Action of isometries: generates new kept spaces:

« 4
A ME oy oNE B I A, - 1Rl

k—/—\,—b‘ g // 6
'left parent (P) space' (2
_ . Dod - D |:| rectangular matrix . B '
Dimensions: - ('D-d)x D open triangles: 'kept
K s ' K K B.C-H
Eb v ® \A{Cﬂ. - \J [BR‘“\ B " H @ Fbcﬂ_\{ﬂﬂb = | é é >lu ¢ 4
\/R/“‘J d!f\
'right parent (P) space' 5 Z:l i (A.D>
Dimensions: - D -
PN CEII oy (2.3,8) |
Isometric conditions, A = = 1" ensure orthonormality of kept basis states.
[’} [ 24y Q4 [
1 |:| = , [ |:| =0 (9

The image spaces of Ag and % 24, T smaller than their parent spaces.

— —

Let { and B be their complements, mapping onto 'discarded' (D) spaces orthogonal to kept ones:

2 e
WK N \/'b \ [ ?\‘ o(6, S A,
O N R AL L 2 1By ©
'left parent space' g - . / 6 -
Dimensions: D-od  — D.d-D ( : ﬁI;ed triangles: 'discarded'
D-d)*¥(D-d - D
) gl-&-\
Bewr + VY ®w< SN (B EY, 6 < 1B, fr W
\.,.—-'—\,2._1 ¢ Cpur
'right parent space’ g
Dimensions: 4. D — d.D -] (@

(J.D _'DBY(J-}))



Dimensions: A- U — d.D -1

— (.0 - D)D)

By definition, )4'z= Q? ® a-(_ and 3.1_ = Bu.@ Eul are unitary maps on their parent spaces:
(1)
| ]
(’D-A)t (D 'd) (O"DBK(O(D)
JI.P
vy b\ VL (e R [ 100 L g
A R LA e e S R
AQ_ ,: nz ﬂ& ﬂﬂ. RL 0 : ﬂ!
'orthogonality:
K =~ -+ R { -
afa =4% AR -4, @#4 =0  KF-o ©
—)—
-, -, dT--, T-ow
(- & - H , . 2]
|:| l \ l |:| (€3)
'When K meets K, or D meets D, they yield unity; when K meets D or D meets K, they yield zero.' G

NOEREEENGE

f : 4 K,
Unitarity implies: Aﬁ Az S - e L .:@'t—:—---—. = 1[? = 'jl_: ®1 )
b A Al { 4D f o
' ¢ : ﬂz
+ « =t
'completeness': ﬂl ﬂe + 2 A P) = ']l.:'(g'ﬂ. i (16
;15 ¢ %JD = §>+ (1)
L1 + =
|:| \ (9
{ P + P K
Similarly: 52“ 524_’ 11"! and 31,‘, &g,, = ix = ﬁfx@iu' imply:  (ia)
'orthogonality':
} ¢ % 5 _ _t
Bf“ Bl«-( y 1(, / Beu 6¢4| = jz p B!.Be.“ - D/ 3, Bg =0, G

Ry



'When K meets K, or D meets D, they yield unity; when K meets D or D meets K, they yield zero.'

¥

4 - K
'completeness': Blﬁ'&U‘ + Ba_«BQ,, = jlo(® iew , (2)

ri;‘_t + = & ey . (23)

The completeness relations imply several identities that will be useful later:

1s projector can be expressed through bond projectors in two ways:

0 3 A
D%Qﬁ = ‘;#QW ‘;‘JDGT = 5(7_, ¥ Sc;i (20)
2s projector can be expressed through four bond projectors:

she (o bl ]
R

DD projector can be expressed through 2s, 1s and bond projectors that only involve K sectors:

s (24 ] [he - )
- phia - sflgs - ola - ;de;i ”
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4. Kept and discarded projectors TS-1.4

Structure of spaces explored by bond-, 1s or 2s schemes can be elucidated by introducing local projectors:

Left K projector (cf. MPS-II.1): le iD,.f] Right K projector: le [‘. ﬂ*‘l
f)" K0y (K| = Ak, K < <. X
e =10 >u Yul = ' Q= | BN hl ) x
%'s: l(sum over & implied) [ - .-(sum over fs implied) £ o
o @'IH =
Left D projector (cf. MPS-IL.1): { & To,fl Right D projector: £ & [, .(HI @
A
b b . D ) -
R lgrogel - Bb 8- P @ - g
Ap  (sumover & implied) 2 A (sum over fs implied) £
?o'_ ° &lﬂ = 0
2X ©X Xx 2 Ay Ay Xx 4
Projector properties: ;( ng = 4§ ?:‘ , &’; &: - &f (x e iK,DO (1)

AN > & _ . P
For example: T L= ,l ] = = ,_%'J;%;%z = 5 (s)
J'A

PP . (z_-'18 = 0 (A}

A b A K A
Bond projector: PQ PQ ® @(:ﬂ ,_'_é‘:f‘;%) CHV_Y_V_F? (#)
delof ] 2 Ly

1S AR a _
1s projector: Pg = PQ ® 12@) @e-n = 'u:f‘;%) \ C%E;:‘Fﬁ @)
Lel, 2] ¢ 4
A ‘ n sites n sites
4 A ———— K _ /
ns projector: % = Pt ® 12®--.® ﬂ‘tm-(?&@ﬂ ) ::Ji;ﬁ \ \ Cﬁi t
Lefr, JCH-VLl ¢+ 4 L Lin
At A [ A k2 A
. b b N 18 Az,s [AS
Projector property: ?) = % ? = f ? = f (o
follows from (2) ( 25 ¢ ( L ) ¢ ( £ 5 ¢
o oL S 71
The projectors Ptb, P;: , Pc., mutually commute (since they are all diagonal in same basis 157 )

However, they are not mutually orthogonal (see below).
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Hamiltonian matrix elements can be obtained from full Hamiltonian via local projectors,

b 5 ’ L 15 A A A 5 - Vls
H!. = j; 2 ’ H!. = j; H Pg ’ Ez 2 (u)
For example: " v
T SN 3 2y
R HF = - E % &'s EE %

O
b
f‘
»

l .
e T <11> 'l(,LI@“I“l%‘)\ ALY

Projectors for K and D sectors

":4:3«;’\\%:('*’ Pei tf,;f?\\c{&‘;*

It

(13)
DD
5= | | o o | | g
L 1 ! 3
These fulfill numerous orthogonality relations; e.g.
X X
{ 4

n

Same-site-indices - orthogonal:
XX Px’ic" xx' (Yl KX .
- - = - .g.
Pu Le 5 % 20 ."‘A_e D * .
L 2

D on earliest or latest site - yields zero: (re)
DX p¥X _ 5 ( I 4 g (¢ N
?LI l'f,' If ? < ? <
_ ) e.g. \ = 0O (t5)
PIXPLY = o Dedf : E vt
L £ ¢

two D's on same side but different sites - yield zero:
>
AR A4S K
~ . X X
5\ g * . sy
pr> PXD ¢ A x
i 7' . z

Bond, 1s and ns projectors are all KK projectors:

68 5b €K _
le = R - ﬂ,w #;% Cérf;ﬁ (%)
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6s
Pﬁ(-l = R - ?I?,eu

Ws projectors are not orthogonal. E.g.

A ':EE

£9 s (o1}
Py Plu fu\ -

u

£ L i "
b | ’
(2B | i

';f‘;ﬁ \ \c\?‘:::g (e

(ST A 7T L

%‘f\é#‘ﬁ*‘

W s projector is annihilated by left D on its left or right D on its right:

POX PJ“‘ = o i

s XD _
?! Ftlé'l - Y

Any s projector can be expressed through two (W

18
f

s
. ,FKK
- 2,041 ¢ .?,ZH
b
b,
or ~—

= PQ-(JZ + o-lz

if lem £

. 4
x A A <4 CL'£
5 ! \\ I-x = 0 (21)
¢ 2 ten

~1)s projectors, in two different ways: E.g.

Sgpee
gt
L_é#;\::)t_. l C%Eﬁ @)

b



5. Tangent space projector

Let \V 13 denote the space of all s variations of | Q)

\y‘lS =

TS-1.5

span of all states \L_’[/') differing from "J:’) on precisely 1 sites

o ¢’
= Spom 2|1P>= xj—ﬁ—% —— ;,66[\,&]z (1)
£
formal definition: = sra,,, { iu«(f’és) l p [\ ,,ﬁl g

image

The 'tangent space projector' is defined by the property that its image is the tangent space:

\V‘S = i'M(P“), = ;M(P‘Z) < 'w«(?‘s) for all fé[(‘il

i (3)
Formally: P* has the defining properties: (Pu) = f'= , I

?\s f!' - ?1\5

(12)

(13)

(16

We seek to construct P‘S explicitly. Note that Zil 'P',S does not work, since summands are not

mutually orthogonal (see below).

We attempt to orthogonalize them by a Gram-Schmidt type of procedure:

) 19
Define %4 ,

>

obtained from P; g by projecting out the overlap with 'PIS

L]

F}? = P;S L ﬂq - ?;; | ) subtraction generates D sectors!

R

(

-
Py
l
-
¢
1]
-0
6

Note in (17) & (18): subtraction generates D sectors, via (3.17) & (3.24):

A I N E

Due to the D's, the following orthogonality conditions hold:

1§
Pl;ﬁ P£'§

Ul
N
©

b=

g0 L¢
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- v
for all 1491: ¢ Pl'> = 0 e.g. 5 :! —r{: { " (z0)
L

L4 g
forall 54" Poey = o B t i -
S8 Le 'y e.g. (2
Y

£
P‘S = p'3 + :, ¢ 2 ?‘S for any ﬂle[],.f,) (22
-1 2 e =0y éi—f
X P
.04 -t
£-!
ez danth ik | Al L S oy
=1 £+ l' - ¢ (I)
(>

Properties (14) hold, because the summands are mutually orthogonal projectors: For example:

N . & , ,
¢ eigl: PUes ~(z SRR AR AN L

¢ =04 > ! = e (=0
e (P i (P
hence (13) holds: ~ jm (PY?) < i forall Cefi, 4]

Alternative expression for tangent space projector, express

g ed purely through bond projectors:
use (3.17) for ' term of (22): ﬁ} - ‘;# * %

(zs)

(@ £ £
IR TR AT

Another alternative expression for tangent space projector, expressed without any D sectors:
use (17), (18) in (22):

. g ‘
pe Z. (Pl - ) % PZ t ez;e'w\?l: - P,,bq) for any ele[)’,ﬁ} @9

—-( (zo)
é._A_Ll_k_k_L, i.AJ,\_k_L_Lz_fl

| ~(lL s 015 < a\b

Page 11



LT - £ A - 2 e

This form for tangent space projector is was first found in [Lubich2015a]. It is often used in the literature
[Haegeman2016], [Vanderstraeten2019, Sec. 3.2], e.g. for time evolution with time-dependent variational principle
(TDVP), see (TS.6).
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