NRG IV: Dynamical correlators NRG-IV.1

Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis [Anders2005], [Anders2006]

D
The combination of all sets of discarded states constructed in (NRG-IIL.5), { | o, e>£ | 4= 1,,'.” L i

forms a complete basis in full Hilbert space of length-N chain, known as 'Anders-Schiller (AS) basis":
&(proof follows below) .
— exact basis

by definition

- . transformation S >Dd
Z_,Is'x5<6“ﬁ\ = l&’exdx = ZZ \‘%Q? <°(,e' (!3
LY P & e,
These basis states are approximate eigenstates of Hamiltonian of length- £ chain:
W (wey, = £
= ‘“,671 = E, (oc,o)ﬂ (2)

A
Here we made the 'NRG approximation': when acting on states from shell £ , approximate l»l‘(
by ]’:‘ l', i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not
relevant for capturing course structure of shell £ . The AS basis thus has following key properties:

» For small ( , energy resolution is bad, degeneracy high.

«As f increases, energy resolution becomes finer, degeneracy decreases.

Projectors:

: A% XX ::)‘ k121 x ¥
Projector onto PL = 2 lue Que| = I (13)
«e et kKUK \a'é e

sector ¥ of shell { :

K and D sectors partition shell into two

el xl'x pY
disjoint sets of orthonormal states, hence PL P,,y = S (OL (e
Refinement of K sector of shell ¢ : px _ po p¥ « < e
' L~ eay 5 Ve y; Lic 1)
2D 7;/[:’_:
Iterate until end of chain: = ?LH t Pﬂn = ?;(“_ = ... A
el/ U
14 % D 4 D
Hence: FQ = z P‘fl = ZI' Pt( £ ?l" = Z[ PLI ((})
(forany £ ¢) % &>t £>£
D K é 0
For [ =dv - ﬂdikl(f = pf.b x P(D = %.'{ P.e Us
=2
C =S
¥4
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is ciomplete!
{ X :
oy g<x' Pl if Lz A
/ 7
General projector products: ?l/ Pg = SX ¥ 'PZ if £ £ (ra)

! ]
Pr 5 iy
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Graphical depiction of completeness of AS basis

e -2 to.0f o+ o} o [ | ot

7,
i shue 629 6‘;‘” 6‘0"‘7. 6‘
— — —_ -+ s
shorthand system environment
{ L L, =
=2 L ——>%e0 | | ... [ |
G,
zol eﬂ. ‘l "f lo lv‘rl [.‘l’ IR £

Transform to basis which diagonalizes sites “p to l o , keeping (K) the full spectrum at each step):

-  F ., F F
Z%-\'ﬁ—?ﬁ”‘@ \ I O

Lo “ﬂf zo 1(91" ﬂ',”' £
Split into discarded and kept states. In latter sector, move one site from environment into system:
D
= Z g { F L
e 42 N T T
o F i
split 1 " ,fo lpt' o¢2
+
s L4 1 F L
22 S YK, l@ \ T
& € \ T g Lo+t
2o rd
qu KO L“‘ ﬂon,
— Y \ rf————‘

larger system smaller environment

Now diagonalize, split again, and iterate:

%_Z _ L F K ©
36D
P on_“ ‘\ T F ' K | r; ﬂ ( ( A ‘ ‘i
split + ¢ ﬂof( ks
K F K
[{ } \ \
IBK (¥
3 O
LT Lo fore b4
Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded":
n o+
\ [ S KO
2 ——— ——op |
‘1 €y }ne X I‘l I
4
D €
{ \ N N
e — —— D
A ‘me « L
The collection of all terms marked is the resolution of identity in AS basis:
{ o K
£ S . \ \,
= 2:7[0 Z Z i . | l‘;f oD (D \ | [ l ‘
f 7 (4 eﬂ “‘1( K ﬂ ﬂfl
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2. Operator expansions [Weichselbaum2007], [Peters2006] NRG-IV.2

non-trivial only on sites —¢, ... ng

3

Below we will show that the Hamiltonian and 'local' operators have following structure in AS basis:

4 N \
|4\ D I,o =1
= D 2
“L D 2 )
D
K, b 3
- Jr m-n
Hamiltonian is diagonal: General operator: exclude KK to avoid overcounting!
("/
(‘ v A _ #KK «
H ZZ E; \,o(e) <0((',| B = % Z. \oceg( [B[Mx] g<o<)el @)
XX

Operators are diagonal in 'environment' states! Hence environment can easily be traced out!

n N
The expression for Hf follows from (IV.1.2). That for a local operator 3 can be found as follows:

A
Suppose 2 isa 'local operator!, living on sites < £, , e.g. on sites (Mf) and o

" :m‘s 6'0
B - ‘ !@4@ ot © + o) o . @t a
6n~? “G' ! 6 seo 6‘51" 6‘0"1 6£

Start from the local operator's exactly known representation on length- A o chain,

IS S A C O SN S

xx' e 1K, D} >< % X
t A A
Define operator projections to X'X sector of shell % x! = (Sx B PR Y (f)
' L X L2
gJ—k | v w | -,
ST (‘—f - 2 X l\l( pon:
fsxf i il i \,}“ _ H\‘ W
e X H‘ T o \ H( wlel w
73 [ [ 3 o
o —~¥ Y ’ \ (no hat: matrix elements)

with matrix elements

o X ¥ =X
/
B¥ = is | 1 - G
20 V ! Y3 < x’x‘ )

oL X / LA T34 18 2
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can be computed iteratively during forward sweep, starting from £ = £,

PR N AT T
Lo [ =\ A [B Kk g,[ L x\ )

- 4
only KK enters here! 4/ e X onf £
: N . K (I ) X
Refine KK sector iteratively, using e Z Pz
+(
A n *kK ~ ) A »
K _ JKk o Ak X X k 2 oK
Bzo ik lo 6 Pz a ;;( ‘pcol,\B Ptoh N a’w: lo*' (">
Iterate to end of chain: L Zx X' o oY oax (
2 Z; Pl &BF = Z 2 8 ¢ x )
xﬂ XX z)to X x
n Ay (,,) :C *kk , #F KK
Full operator: B = 7 B 5 = \
P Z By g zZ 2 ¢ x 7 x){:i:} H (4)
l;ko xx

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

A . nf . ";C + KK
H* & - P s - oox'
B(¥) = MR > 2 B, @
2
with time-dependent matrix elements, evaluated using NRG approximation (1.2):

J o' " . FA ta"'E:){"
{le x“)l ¥ = < llc b ‘a>¥ - {B‘x’yl ae(E

W

('3)

Important: since we |te;rat|vely refined only KK sector, the time-dependent factor is 'shell-diagonal':
factors with € ¢ (E t Z # 4 do not occur. Using different shells to compute
E,' and E 4 would yield them with dlfferent accuracies, which would be inconsistent.

(2,r3) tKk A

Fourier transform: é(u jd{‘ “’\’tg(.() Z P Bl X( w) Us)
X%

X/ v' x!' o ’
Bl , = 1B 17, 8o - ek -eky) (re)
qa A
Operator product expansions: B C Proceed iteratively, refining only KK-KK sector:
A I A K AKA I\Kl\ I\K (L”() ~ xl/‘\ "X' ~ oy ~ X” P xl
= = = {
Xxx XK x
Start from ﬂ a,&, and iterate: (12)
Ayl a x! Kk A ! # KKK c e X
= Z Bzv %/ Clo = Z zxxlCX X = ZZ B X'
x"X'K z X"XIK 3 X"X'K X
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3. Full density matrix [Weichselbaum2007] NRG-IV.3

NRG approximation

"y ¢
Y L ;—_z \«e.) e PEx ];<°5e_\ =z ,t‘;i‘%igl((

Liev o

{
- % fJL»D ’ [Pf 01 -

=de

i

5

VA
g, bt

o (2)

"

- A ) A x' X a .
Sector projections of Jo for shell ¢ , defined as f)ie]x = P jo PE , are given by:

(i HS
) ~K ~ Db ~ K
- ~ 3
_PlD 7 ﬁﬂ_ K %Lﬁ:”]’ ’ f‘)ﬂ K Pj =0 ®
provides refinement for rest of chain density matrix is sector-diagonal

Reduced density matrix for length- ﬂ chain is obtained by tracing out environment of all later sites:

p O

= 4 _ ~
'fl Yx ) s:b¢s>,( ﬁl Y] (fl [1’ fi K‘ °) W

6( N-£  degeneracy of environment for shell ,e

ijbfzpm :j fro ©

|nd|cates sum over local

DD-sector:

basis due to trace (no hat: matrlx elements)

with matrix elements

—D lxl D o! x_[ (l) Sog\ FEV ZD o(i"e (‘)

[ 1 o = |f2 o @ = L
« « :D
T
“A
D ~-BE density matrix of relative weight of
where 2 L = Z e F * ¢ D-sector of shell ¢ D-sector of shell ¢,
o (without environment) to total partition function,

is partition function for D-sector of shell Y/ with 220 =
(without environment) e ¢

KK-sector:
A (K/jnﬂ O,
=~ K ~K
f" K ﬂz'wa ot LKJU %: P(“D%Gﬂ K m «

P(eln

L K 5> B G
[JDR'KK]“ @ - xz';[ K—)—m PL‘ ) :Q\ % “j()t“ X

K pt

Starting at { = x¢ , the KK matrix elements can be computed iteratively via a backward sweep.
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thermal

‘”z suppression

The weights wL , viewed as a function of L , {5 counting
rb /\ suppression

are peaked near lT , with a width of five to ten shells -t
1

(depending on A and T )
* o _%\Wo{

Reason: the Boltzmann factors ¢ ~ /g 85 in partition { = 2

functions yield & & for sz s> T or =~ | kv
for Ef << T . Hence
£.p o -z FE“ 2-p _gAUl [ B |
2 e f -l
2 2477 0 d “ 4_C At U
Z Z, Z o -PEL y 2D
v'e’ >0 ¢

J-§ o~ df'ZT

sum over environment of shell Z 7 yields
Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to
temperature have dominant weight, while avoiding the brutal single-shell approximation 402 = S,, ¢

Thermal expectation value: Sx" due to trace
l‘/ A no~ !
n . n (z.18) X X
<@>T = T“f[ﬁB] = Z \‘"[PL %' X (10)
definition shell- £, X"%'X —
representation @) g";‘{,

( operator trace

-2 T (P By x‘//’—‘ y vl T P ™
trace out all sites { > £,

X all 5|tes 7 sites £ o
¥ (2
”‘ \
Lo t

race out all sites € £ ¢,
(close the zipper)

S
>

»

»
<

W matrix trace

—_ X p )
—ZSI:-I {,,[jolo XB!o k] x ot'o( joll Xl [ ‘ ‘J. (3)

can be computed using solely shell- [, matrix elements
(but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products,

with full density matrix replaced by reduced density matrix.
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4. Spectral functions: full-density-matrix (fdm) NRG NRG-IV.4
[Weichselbaum2007] [Lee2021]

AS basis, being complete set of (approximate) energy eigenstate, is suitable for use in Lehmann
representation of spectral function, with the identification flot)g = i Idc)l , £ = lo,.-.,tz
(NRG-II.1) A
RC . A Py _
A% = \(4:5 ciot T p 3] = Tr[B3w cpl 0
7

trace is cyclic

Insert representation of these three operators in complete AS basis:

T«[ZZZ |"‘“>~ (5" ‘“) ;]N%&"}’“Eéi [
+ KK

/-

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.
Simpler approach (leading to same result) uses operator product expansion (2.18):

A% < Tl - 27 WE W €)1

x"x'x

X H
trace is cycI|c }) X

Perform trace in same way as for thermal expectation value, (3.10): trace over sites ¢ '> £ vields

]
reduced density matrix, trace over sites ¢ ¢ £ yields matrix trace over shell { :

X
iy )

£ KK _ 1 2 X
A% = 22 e [3 0% )] Gty @

4 sheIIE B.Q y

£ KK o L ) ~ o
b SR S

b X X s)

resolves frequency at scale ()~ A~ 2

Each term involves a trace over matrix products involving only a single shell.

Easy to evaluate numerically. 2 ¢

To deal with delta functions, use 'binning':

partition frequency axis into discrete bins, I €,

centered on set of discrete energies, ié l, and replace I

S(‘"’"E> by $(w~§)= if E < I?,_ _:—: o

weight per peak weight per bin

This assigns energy ¢ to all peaks lying in same bin.

Finally, broaden using log-Gaussian broadening kernel, (NRG-III.3.4).
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(at particle-hole symmetry, ¢d = - U[z

Spectral function of Anderson impurity model
and zero magnetic field, o )

+ f
dsds/_w\ . ,4”(5’(5 (e0)

w| =
Alo) = A
Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-IIL.3.4).

Result: for [/ << | (eg.=0.1) and T <2« Tx (e.g. = 0), one obtains

T/Tg =0 |

- NRG correctly captures width of central peak

T // around # =0 , the 'Kondo resonance'.

NRG overbroadens the side peaks,
/ which lie at high energies.

A('W‘)/ﬁ(o)
|
|

0.5

—— The true form of side peaks is narrower.

1 _0'.5 (') 05 1 Over-broadening at large frequencies can be
reduced using 'adaptive broadening' technique

w [Lee2016].

T[FAS(C\I :'-°> = 1

<ot d i Dknft is large enough.

Exact result for peak height at T=0:

NRG reproduces this with an error of

With increasing temperature, Kondo resonance broadens and weakens as | approaches and passes T.

T/Tx |

1f T/Tk 1
0 0
0.1 0.1
— 1 1
D
§ 10 2 10
X 100 hod 100
3 . )
?'i/ 0.5 ;z/ 0.5
0 L 0 L . . L "
-1 0.5 0 0.5 1 1072 1071 100 101 102
w u)/TK
Sum rule: we expect (for any temperature): )
—

de 45(“’) = <dt”{5>‘r * <‘AS 0{: >T = <{0(g,0($f3\>_r = (.

-5
Due to use of complete basis, f{dmNRG fulfills this sum rules to machine precision, with error £ ro ‘
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