DMRG II: Original DMRG, subspace expansion

DMRG-II.1

1. Original formulation of DMRG [White1992], [White1993], [Schollwdck2011, Sec 2.2]

Goal: finding ground state of infinite chain

Infinite-size DMRG (iDMRG)

Diagonalize small system (e.g. 2 sites), write ground state in the form

= & * l}. — Tt
Iy ) i[“w@rz% b ‘l‘_l,,J T
o, 5%

'‘Block L' describes left part of system, with basis { ‘ °<>L §

'Block R' describes right part of system, with basis z ( ‘5>R j

Now add two sites between blocks L and R, and seek new ground state of H LeeR of the form

Q]

*6. .62 f
5 = leyledlenlpy, pRE « ¥ RURE
L LR [S(i Y r ; . T * (@)
by minimizing (Lanzcos) 41 HL ..Kh{D o, % Se 183
Wiy

b, g
Bond dimension has grown from T)xD for q,“[s to Dy Dcl for ‘{' “© zﬁ , SO truncation is needed.
Split enlarged system in the middle, and call left side (new) block L, right side (new) block R.

Write ground state in the form

b
oy = (a) 1s) Pt v
= 0 ! >——<¢
t R S [ Ta 1 | o)
with composite indices & = (K\ 0, ), b = ({5, 61() Imb lo2g
of dimension @A = .'D‘>< o . White's truncation prescription: compute reduced DM of . &,
diagonalize __. _
p, = Te ol = L) w2 gy dal =Z 1y p_ Ll oW
Le 74 L b L < L f) < L
-\
(.PL-) a
Construct truncated basis for block L, using the D eigenvectors | c7 with the largest
i | R : Iol>“w = IN> here truncation h ;
eigenvalues PC' . Rename: i = | C ) ere truncation happens
Ditto for block R. . l{’u 6'b 6 B ‘
Then iterate,: add two more sites, —+—,r>—| 1T )
. A 4
seek ground state of larger system using — 6 c —
using similar Ansatz for wavefunction, etc. o3 L K 1%
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seek ground state of larger system using —_ 6 -—
. . 3
using similar Ansatz for wavefunction, etc. Loy, L I£2%

Remark: we established early on (see MPS-II.2) that the eigenvalues /be of reduced density matrix of L,
are obtained by SVD of 7.(“9
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So retaining the {)L-eigenstates with largest ‘{0 < Is equivalent to just doing SVD-truncation on "f’ ab i

Modern formulation

Start with MPS in bond-canonical form:

T (¥)
\———Y_J
L &
. . AW B
Add two central sites and find ground state (Lanczos): T T 0T 17T (8)
— —_—
L ~ o R
) . ) AN R
Do SVD to split chain into two larger blocks, and truncate: I
g =UsSVY = AAE - BN 9
L R
Iterate: make chain longer and longer, until ground state energy per site converges.
'IDMRG state prediction’ [McCulloch2008], [Schollwéck2011, Sec. 10.1]
To speed up Lanczos search for ground state, construct initial guess for 1{’ from previous data:
v v v \ v
initial Ansatz: A AB o QR-decomposition
~—— —— v v -( v v
- /\’
A L nANB A A As_ A AA A R 8
Logic: let A be followedby AB ,and R preceded by an. \___A;"‘,'ﬁrz__z
To reverse arrows between B and 4 , use A~'. Regroup, do QRs. use this to initialize Lanczos
This leads to 'dramatic speedup' of iDMRG.
Finite-size DMRG
Grow chain to some length Efusing infinite-size DMRG algorithm. T 1 T R W ()
-— e —
L, R
Then reduce L, enlarge R, optimize L{/: ,LI
I e e e L )
Diagonalize .P Lo truncate. P
T 17 1T 1T T @
- -——
Iterate: sweep back and forth until convergence. Ls R

This is conceptually identical to variational optimization with two-site update.

Single-site DMRG is also possible & variational single-site update.
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2. Time-dependent DMRG (tDMRG) [Daley2004], [White2004] DMRG-II.2

Invented 2004 by Daley, Kollath, Schollwock, Vidal, and independently by White, Feiguin.

Goal: to compute (w(t)) = e~°¢ Hé l'l(r) Q)
Time-evolution operator for nearest-neighbor interactions (cf. iTEBD.1)
{\1 Kb 46
Even-odd decomposition of Hamiltonian: ¢ ” o o} v ¢ o o
t T 3 4 s 6 ? 8
" A A - Z| /Z's 25 “—.\?
H = Z Ke = # + ” (v
£ ° c

Trotterize: + = TN
~iH _etll . B N _izH el Ny
&(%) = e IH% - (C (f(/‘/e{- Ho) ) + ~ (6 tTH, . (T lo . 0(‘62)> .

Time-evolution protocol [Schollwéck2011, Sec. 7.1-7.3]

~

Construct MPO representations for [, and (l, , compute [1‘» ( {-{—»‘t)) = e U, («4,({))
»-':Z.l_c —l:".st aiz-st (b)

3\ MPO Ile ) L | e
().MPO U, = : ‘.7; : ln—«:‘:‘: ©

bond dimension = 1, so consider factors separately

. " 2
reshape SVD o reshape 4 d
6.‘( 6.2( _ w 6." \//;)/ M 6‘I d 2
O G 62 - G.‘/"‘ 29 ’ /A=".--' @

can be constructed explicitly then SVD to yield

(ii) Evolve
y G = Y, (g) = DT bj

reshape, SVD — ¢
- T'—‘T Q)
) ‘; L \ok wd

(iii) Compress: either 'variationally' (global) or 'bond by bond' (local)
A
Variational compression: First apply full MPO for I/{,, to entire chain. Then variationally minimize

n . . . e
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Variational compression: First apply full MPO for [/{(, to entire chain. Then variationally minimize

“ e ( {:f‘c)) (’l{'tw) ll ¢s) . This yields optimal (in variational sense)
bovqete_, way to compress |1 ) to [ )
bond dimension D A h"&d w“fm

with given resources.

F

a
Explicitly: ?—3—{{” [( U(: sl I"fw 3 - :\ <‘-[*W“?Wl>l = o ()

A A a4 a kK A A A A A
I T I || @
At af At At AT pt a at
—_— —_—
L
~ ;\ is fixed By normalization
[ AR = A A condition: Rt_ﬂc =1 3)
Sweep back and forth, until overlap < L‘/W \‘lh?“k} ) no longer changes. Then apply ae .

Bond by bond compression

A
Apply Mn to bond 1-2, —
SVD ; ‘
then reshape, SVD, truncate; truncate SVD | .
- - truncate SvD i
repeat for bond 3-4, then 5-6, etc. truncate SVD
truncate

This protocal keeps bond dimensions low throughout, hence is cheaper. However, some interdependence
of successive truncations may creep in, hence variational compression is, strictly speaking, cleaner.

The difference between variational and bond-by-bond compression strategies becomes negligible for
sufficiently small T , because then the state does not change much during a time step anyway,
so truncations are benign.

. . - . 0 "y " " s g
With bond-to-bond compression, there is no need to split = Ho + “e, , U= Ue-Us @)
Instead, Trotterize as follows:
~ ~ ~ [aY :
- ~lya T it T T | |
LA A € .
is) j

1st order Trotter
or

-
b= ceoe

- ’." -."‘Z ‘-(‘ ’C/ ’-.Z |
e—LH-C (C (ﬁ[Z/L e C"q, /2. e M Z)e t ”—(Z {

) -~ .2
(Q’E ”’lt/?‘ . e——-iﬁll/z e""d,C/L> *&(I3> !

2nd order Trotter QY .
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Frroranalss \C_/ for nth order Trotter scheme
n+(
ino(iu = (error per step) (# of steps) = T % = " 4 o

linear in time; controllable by reducing T

Truncation error due to truncation of bond dimensions:

i( ~ C , grows exponentially!  (until you 'hit the wall')

L3
[

Reason: under time evolution, state becomes increasingly more entangled; on a bond :’—'—e‘l

Se = — Z_(S‘,,\L,a_\(g"x)z (1e)

entanglement entropy is

This is maximal if all singular values on bond are equal, (5"‘,‘{' = —'D" = Sg < '&"’ZD G

If Hamiltonian H(¢) s changed abruptly (quench) such that global energy changes extensively, then

S(t) £ g(o) + et (20)

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower; but still significant.]

N . S#)
Bond dimension needed to encode entanglement entropy S g Isgiven by D) Z 2 (@)
If, however, bond dimension D is held fixed during time evolution, errors will grow exponentially.
A quantitative error analysis has been performed by [Gobert2005] on the exactly solvable XX model:
x X 3 y
H = $ @) Gobert2005
le ! L=100, dt = 0.05
£
They performed quench, with initial state n o100
\ - 10703
_ ! g
['Lf>3"=° - [ T Tl T‘ ; ‘L J’ l l Uﬁi 10’04 / . o s 4
~ 10-95L 30 ]
ey £} B "
For +50 « T#o ,domain wall widens... 1008 | m=30 g2 —
1077 05 Tl
r = 1 20 30 " 40 50
10798 ,t\ . : .
70 o a0 0 1 D' sime 20 30
© domain wall ‘OM d""-tns;n\
50 % broadens FIG. 6. Magnetization deviation AM(7) as a function of time for
40 time with.time different numbers m of DMRG states. The Trotter time interval is
30 04 fixed at dr=0.05. Again. two regimes can be distinguished: For

early times. for which the Trotter error dominates. the error is

20 0.4 t=0

i6 domain wall slowly growing (essentially linearly) and independent of m (regime
< ) A): for later times, the error is entirely given by the truncation error.

o i at time t30 . /

40 0 L wo o MR e e which is m-dependent and growing fast (almost exponential up to

|S% (““ - some saturation: regime B). The transition between the two regimes

o o1 02 03 04 05 " = occurs at a well-defined “runaway time” 7z (small squares). The
inset shows a monotonic. roughly linear dependence of 7z on m.

I}
»
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3. Exponential thermal renormalization group [Chen2018a] DMRG-II.4
(XTRG)

/

Goal: computation of the thermal density matrix, /8( ‘B ) = e-” ﬁ . /3 = /T )
for arbitrary temperature T , in particular large to intermediate T , (i.e. small to intermediate ﬁ )

A - “ a
Once P is known, thermal expectation values follow from {o 7/3 = Tr | f) ( F) ) ] )

Further application: to obtain ground state projector, take /5 — oo |

. ~TH N
One option: imaginary time evolution with Trotter decomposition, /D(F) = [ é ] ) T~ f/,\/

However, then number of time steps increases linearly with /5 , S0 reaching low T is numerically costly.

m

Key observation 1: If "(ﬁ) is represented as an MPO,
the MPO entanglement entropy grows only logarithmically
with decreasing temperature: [Barthel2017], [Dubail2017]

~
V
Vv
t
=

|
Sﬁ {F) ~ 4 ((S) (for 1D systems) (&) I

temperature controls
correlation length

§55~%

Thus, seek algorithm which lowers temperature in exponential steps!

T 27 37 47 e lnﬂ
Key observation 2: multiplying the density matrix by itself o o o o o———0—>
lowers the temperature by a factor of 2 : A L

e-zlsh‘

/3(2/93

_&H -
C‘&w/g

PP “

|
0"
x,
:~b .:b
-0 00

XTRG algorithm exploits this:

(i) Initialize density matrix at very high temperature, as an MPO (with small bond dimension):
) j ‘
0 x 1 - 1o (s
jO(Fo /50 l‘l . /‘o x o )
(ii) Compute /31?/0 /3 (#) via MPO multiplication.

(i) Reduce bond dimension by global variational optimization:

2 o (A
’ac‘f EEF "QB‘C"p = @ @
[€r) e + /f 'f I‘\\ r\\
P(/;\ E(P) P{lm Frobenius norm
(fat) input MPO,  compressed MPO,
large bond dim smaller bond dim.
Compute environment of bond to be updated iteratively,

use SVD to bring updated MPO bond into canonical form.
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Application: XTRG for 2D Hubbard model at finite-temperature [Chen2020]

2D Hubbard model:
('7 j 9

FIG. 1. (a) Bilayer calculation of the spin-spin {S,- . S‘),-) and hole-
doublon (f; - d ;) correlators by sandwiching corresponding operators
in between p(B/2) and p7(B/2), where the snakelike ordering of
sites for the XTRG is indicated by thick gray lines. (b) In the
low-temperature AF background (blue down and red up spins), a
magnetic polaron (gray shaded region) emerges around a moving
hole, where the spins around the hole can be in a superposition of
spin-up and -down states. The blue ellipse represents a hole-doublon
pair showing a strong bunching effect. (c) A hole moves in the system
along the path indicated by the gray string, leading to a sign reversal
of the diagonal spin correlation. The red and blue shaded regions
illustrate the deformed magnetic background due to the interplay
between the hole and spins. Diagonal correlations are indicated red
(aligned) or blue (antialigned).

H=-1) 10]0+Hc)+Uannl¢ W o,
i, j),o i,o

(8ie8)
Cs(d) = N 2=l D

number of pairs of spins at distance

(a)s
<
s ary o=
L5 og 05 5 g 5 =5 g 5 =5 g 5
0.06 0.12 0.24 0.49 0.98 T
0.4 T T T =7 0.6 T T
NG XTRGDQMC d L XTRG
—_— . 1 6 - =4
03 — b 1 g7 oap - L=6 |
) —— b VIo6 - L=8
90'2 - ¢ 2 6% 4+ Mazurenko et al.
1 Mazurenko et al. 021 (017 )
0.1 @017) d=1
©
00 (b? ooseceq 0.0
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FIG. 2. Half-filled FHM with U = 7.2 and L =4, 6, 8. (a) The
finite-size AF order pattern is determined from the spin correlation
Cs(d) versus (dx, dy), which melts gradually as T increases. We show
in (b) the spin correlation function |Cs(d)| of various d = 1, V2,2
and in (c) the finite-size spontaneous magnetization m,. Excellent
agreement between the calculated (L = 8) data and the experimental
data [17] can be observed.

Inspiration for such computations comes from cold-atom experiments seeking to

simulate the behavior in cuprates using a quantum gas microscope:

Page 7

[Koepsell2021a]



Quantum Simulator c

Spin-Charge Correlators D Theories
m At Fermi-

(Cbare = (Qromn. . (Odisc. Hubbard
Spin-Spin |

B = ki |
i - = ;‘;‘;FMA_"' ] L
\ e Approximate

A B
. Polaran =\ Xs  Anomalous
o o o Breakdown 2 .’\- Susceptibility 14
N A . n - -
e Singlat * Ingommen. ;
® 0@ chaacter @ LA Spin-Fluct,
b, =30 % }TL.
Spin
Folaronic
~ -
g Strange Metal |
© y
e
Q L
200y - -
E % Fermi Liquic o A%
= B E% o Y
g "-:_
Collective 8 #i
. g
0 Doping &

Fig. L Probing doped Mott insulators with spin-charge correlators.

(A) Conjectured phase diagram of the 2D Fermi-Hubbard model upon hole
doping & and temperature 7. Boundaries indicate crossovers between different
regimes. Insets summarize our main experimental results. Incommen.,
incommensurate. (B) We independently image the two spin components of each
Fermi-Hubbard realization with our quantum gas microscope. This enables
reconstruction of the full spin and density (charge) information. The doping
varies spatially in our harmonic trap and can be tuned by the total particle
number to study the doping dependence of correlations. (C) Spin-spin, hole-spin-
spin, and hole-hole-spin-spin correlators are analyzed in this work. As illustrated,
bare multipoint correlations contain lower-order contributions and a connected
part. For instance, in the magnetic polaron regime, a hole alters the
antiferromagnetic environment in its vicinity. Therefore, bare hole-spin-spin
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correlations are reduced (white) close to the hole compared with the strong
antiferromagnetic correlation at large distance (blue). The bare correlation
(C") can be decomposed into the genuine effect of the hole, that is, the
connected part (C*™™, red), and the antiferromagnetic (AFM) background value,
that is, the disconnected part (C%, blue). The sum of both parts corresponds to
the bare correlation. Similarly, the genuine effect of a pair of holes on spin
correlations (i.e., beyond single-hole effects) is quantified by the connected part
of hole-hole-spin-spin correlations. This work focuses on connected correlations.
(D) We compare experimental findings to exact diagonalization of 4x4 Fermi-
Hubbard systems (top), mean-field-inspired approaches or free fermions
approximating Fermi liquids at high doping (second from top). as well as three
approaches (uniform-RVB, =-flux, and string), which are designed to capture the
low-doping regime (bottom two panels). Indep., independent.



4, Finite temperature: purification [Verstraete2004b], [Schollwock2011, Sec. 7.2.1] DMRG-II.3

General quantum-mechanical density matrix for a mixed state, 'i) = 7 | /D? P/"‘, ?(v | 0
MV
has three defining properties: (\,p’, de-notes ‘physical
; e X S,
(i) Hermiticity: F = P ®@
(i) Positivity: Eigenvalues are non-negative: f) . = Z \o(> Jb,,( Lot | (»
l,msma(czrl o P P
e
20
(iily Normalized: Tt ﬁ = | s = foc = | (W
o~
" AR
Expectation values: {8) = Tr( ﬁ 8 ) or M (s)
Tr(p )

if one works with non-normalized 'f‘)
'Purification’

N
Can we represent f in terms of a pure state?
Yes: double Hilbert space by introducing an 'auxiliary' state for each physical state, and define

'purified state': |Q> = % \M?xl oL 7? [_J’S? & /74 @ﬂ? (‘\
auxiliar?? ?physical N e

This can be viewed as Schmidt decomposition of a pure state in doubled Hilbert space.

Norm vyields trace: (‘42\‘?1) = ZI“({); P<“’ \SAf ‘ o(z.( x>@ _ % [’,( _ T"f’? @

1 “K
Tracing out auxiliary state space from \‘\1; ){ @ , (a pure DM in doubled Hilbert space) (q-)
yields physical density matrix f)" (a mixed DM in physical Hilbert space):
Tr 1PXD| = 2 = <[s\x'5\o<'> @[j LY )
a pras a ? [) P a &
ﬁ ——t L_V;J
:ﬁsm‘ L ®

I}

% “QP S ?Qx‘ - f? @
Purified-state expectation values in doubled Hilbert space yield thermal averages in physical space:

l . = ( ' , o
{FldoolL) g@; 5,,(15«MZ\«>?@? (1o
NI
A A Aa

O |« = A =
; ?40‘ ol >? p Try £ % O W

n

If 5 isnot normalized, use (T 1w 8.' ) T 36, .
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If 5 is not normalized, use | 1 & | 0 .
P <glieq, i3 - \""(‘_’ Po= <8y Uz)
QAN Te fo

Thermal density matrix

s}
Thermal equilibrium is described by Ff’ = Q’FHP = Z [ & >‘P e‘PEu ?<o<| (13)

oL

Not normalized: T}? f)f = = Z(F) =  partition function # r ('e)

Purified version: lq{p = ; \o()aloO? e” FE“/Z = e*PH?/z Z ‘of) ‘ol_P

s'&b)

Us)

acts only on physical spaé?!

RN

)
oMy
aL
~
.
o
0
=
-~
N

£
Z 1676 . lg71g) = WZ‘(ZHHQ)) (1)

_—F—J
maximal aux-phys entanglement

1l

product state, with each factor describing maximal aux-phys entanglement at site 4

Note:at T=o ,ie. [5 =p ,Wehave (147 = ‘-Tk‘o) (all states (?7 are equally likely).
Check:

S AL A Al A ML)
- e~ Ol® ~ Hv/ A
- %§ 5 Bl /z o FHe/3 ),

n
by
"
»
T
~
(®)
t
—
:3
=
—J
o)
-
(o}
-9
[—
AN

Protocol for finite-T DMRG calculations

6 6, 6y 7 & auxiliary legs
Start fi - —
a rom pur_e hkow - "1 > { 1 ,l 1 > ' 1 > 1] 1 :, 1 X 0?)
product state in 6, ,L\ 6, 6 6 e physical legs
doubled Hilbert space:

bond dimension = 1

Perform imaginary-time evolution over a 'time' [5/2 , acting only on physical space:

V ¥

L & auxiliary legs
‘ S ~

¢ ]

> = -F”’z\qa S S R S NS SR SN
4 )' l‘ * 4 & physical legs
(Trotterlze ) compress
2 I SR SR S SR \

For thermal averages, trace out auxiliary space:
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For thermal averages, trace out auxiliary space:

<6mp>= CEola,0 O 1B) =
<‘Y@\1Eg>
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