
DMRG-II.1

Original formulation of DMRG1. [White1992], [White1993], [Schollwöck2011, Sec 2.2]

Goal: finding ground state of infinite chain

Infinite-size DMRG (iDMRG)

Diagonalize small system (e.g. 2 sites), write ground state in the form 

'Block L' describes left part of system, with basis

'Block R' describes right part of system, with basis

Now add two sites between blocks L and R, and seek new ground state of                    of the form 

by minimizing (Lanzcos)

Bond dimension has grown from            for            to                 for                  , so truncation is needed.

Split enlarged system in the middle, and call left side (new) block L, right side (new) block R. 

Write ground state in the form 

with composite indices 

of dimension .  White's truncation prescription: compute reduced DM of        ,

Then iterate,: add two more sites, 

seek ground state of larger system using 

using similar Ansatz for wavefunction, etc. 

Construct truncated basis for block L , using  the         eigenvectors                  with the largest         

diagonalize

eigenvalues          .  Rename:                        here truncation happens

Ditto for block R. 

DMRG II: Original DMRG, subspace expansion
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Then iterate,: add two more sites, 

seek ground state of larger system using 

using similar Ansatz for wavefunction, etc. 

Remark: we established early on (see MPS-II.2) that the eigenvalues          of reduced density matrix of L,             

are obtained by SVD of 

So retaining the      -eigenstates with largest         is equivalent to just doing SVD-truncation on 

Modern formulation

Start with MPS in bond-canonical form:

Add two central sites and find ground state (Lanczos):

Do SVD to split chain into two larger blocks, and truncate:

Iterate: make chain longer and longer, until ground state energy per site converges.

Finite-size DMRG

Grow chain to some length    using infinite-size DMRG algorithm.

Then reduce L, enlarge R, optimize      :

Iterate: sweep back and forth until convergence.

This is conceptually identical to variational optimization with two-site update.

Single-site DMRG is also possible         variational single-site update.

Diagonalize         , truncate.

'iDMRG state prediction'  [McCulloch2008], [Schollwöck2011, Sec. 10.1]

To speed up Lanczos search for ground state, construct initial guess for        from previous data: 

initial Ansatz QR-decomposition

use this to initialize Lanczos

Logic:   let        be followed by           , and        preceded by           .

To reverse arrows between      and      , use        .  Regroup, do QRs.

This leads to 'dramatic speedup' of iDMRG.
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DMRG-II.2[Daley2004], [White2004]

Invented 2004 by Daley, Kollath, Schollwöck, Vidal, and independently by White, Feiguin.

Goal: to compute 

Time-evolution operator for nearest-neighbor interactions 

Even-odd decomposition of Hamiltonian:

(cf. iTEBD.1)

Time-evolution protocol [Schollwöck2011, Sec. 7.1-7.3]

Construct MPO representations for         and        , compute  

(i) MPO

bond dimension = 1, so consider factors separately

reshape, SVD reshape

can be constructed explicitly then SVD to yield

(ii) Evolve

reshape, SVD

(iii) Compress: either 'variationally' (global) or 'bond by bond' (local)

Variational compression: First apply full MPO for          to entire chain. Then variationally minimize

_

Trotterize: 

2. Time-dependent DMRG (tDMRG)
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Variational compression: First apply full MPO for          to entire chain. Then variationally minimize

bond dimension 

.   This yields optimal (in variational sense)

    way to compress                    to             

    with given resources.

Explicitly:

     is fixed by normalization

condition:

Sweep back and forth, until overlap                                             no longer changes. Then apply

Bond by bond compression

Apply to bond 1-2, 

SVD
truncate

SVD
truncate SVD

truncate SVD
truncate

This protocal keeps bond dimensions low throughout, hence is cheaper. However, some interdependence 

of successive truncations may creep in, hence variational compression is, strictly speaking, cleaner.

The difference between variational and bond-by-bond compression strategies becomes negligible for 

sufficiently small         , because then the state does not change much during a time step anyway, 
so truncations are benign. 

With bond-to-bond compression, there is no need to split 

Instead, Trotterize as follows:

or 

1st order Trotter

2nd order Trotter

then reshape, SVD, truncate; 

repeat for bond 3-4, then 5-6, etc.
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Error analysis

(error per step) (# of steps) 

for nth order Trotter scheme

linear in time; controllable by reducing 

Truncation error due to truncation of bond dimensions: 

, grows exponentially!    (until you 'hit the wall')

Reason: under time evolution, state becomes increasingly more entangled; on a bond                      

entanglement entropy is 

If Hamiltonian              is changed abruptly (quench) such that global energy changes extensively, then 

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower; but still significant.]

Bond dimension needed to encode entanglement entropy            is given by 

This is maximal if all singular values on bond are equal, 

If, however, bond dimension       is held fixed during time evolution, errors will grow exponentially.

domain wall 
at time t=0

domain wall 
broadens 
with time

A quantitative error analysis has been performed by [Gobert2005] on the exactly solvable XX model: 

They performed quench, with initial state

For , domain wall widens…

[Gobert2005]
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DMRG-II.4[Chen2018a]

Goal: computation of the thermal density matrix, 

Once           is known, thermal expectation values follow from 

Key observation 2: multiplying the density matrix by itself 

lowers the temperature by a factor of 2 :

for arbitrary temperature       , in particular large to intermediate       , (i.e. small to intermediate        )

Further application: to obtain ground state projector, take                   .

One option: imaginary time evolution with Trotter decomposition, 

However, then number of time steps increases linearly with          , so reaching low T is numerically costly.

Key observation 1:  If             is represented as an MPO, 

the MPO entanglement entropy grows only logarithmically 

with decreasing temperature: [Barthel2017], [Dubail2017]

(for 1D systems)

Thus, seek algorithm which lowers temperature in exponential steps!

XTRG algorithm exploits this:

(i) Initialize density matrix at very high temperature, as an MPO  (with small bond dimension):

(ii) Compute

(iii) Reduce bond dimension by global variational optimization: 

Frobenius norm

via MPO multiplication.

(fat) input MPO,
large bond dim

compressed MPO,
smaller bond dim.

temperature controls
correlation length

Compute environment of bond to be updated iteratively,

use SVD to bring updated MPO bond into canonical form.

Iterate (ii,iii) until desired temperature is reached.

3. Exponential thermal renormalization group 
(XTRG)
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Application: XTRG for 2D Hubbard model at finite-temperature  [Chen2020]

2D Hubbard model: 

number of pairs of spins at distance 

[Koepsell2021a]

Inspiration for such computations comes from cold-atom experiments seeking to 
simulate the behavior in cuprates using a quantum gas microscope: 
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DMRG-II.3[Verstraete2004b], [Schollwöck2011, Sec. 7.2.1]

General quantum-mechanical density matrix for a mixed state, 

has three defining properties:

(i) Hermiticity: 

(ii) Positivity: Eigenvalues are non-negative:

'p' denotes 'physical'

(iii) Normalized: 

Expectation values: 

'Purification'

Can we represent       in terms of a pure state?  

Yes: double Hilbert space by introducing an 'auxiliary' state for each physical state, and define

'purified state': 

physicalauxiliary

This can be viewed as Schmidt decomposition of a pure state in doubled Hilbert space.

Tracing out auxiliary state space  from                        (a pure DM in doubled Hilbert space)

yields physical density matrix                 (a mixed DM in physical Hilbert space):

Purified-state expectation values in doubled Hilbert space yield thermal averages in physical space:

if one works with non-normalized 

or 

If       is not normalized, use 

Norm yields trace:

4. Finite temperature: purification
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If       is not normalized, use 

Thermal density matrix

Thermal equilibrium is described by

Not normalized: partition function 

Purified version:

acts only on physical space!

Note: at                , i.e.                , we have                              (all states           are equally likely). 

maximal aux-phys entanglement

product state, with each factor describing maximal aux-phys entanglement at site 

Protocol for finite-T DMRG calculations

Start from pure 

product state in 

doubled Hilbert space: 
bond dimension = 1

physical legs

auxiliary legs

Perform imaginary-time evolution over a 'time' , acting only on physical space:

physical legs

auxiliary legs

For thermal averages, trace out auxiliary space:

compress
(Trotterize…)

Check: 
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For thermal averages, trace out auxiliary space:
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