DMRG-I: Ground State Search [Schollwtck2011, Sec. 6.3] DMRG-I.1

* The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken
Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit L > e : Ostlund & Rommer
[Ostlund1995]

» Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

» Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]

« Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Graphical representation, assuming site-canonical form with orthogonality center at site { .
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Arrow convention: use same arrow directions on virtual bonds for MPO as in MPS. Then, orientation of
MPS triangles, Y , T, A , A , hence we henceforth drop most (soften all) arrows.
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Structure of this equation: H ) C ¢ C 2 ®
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with normalization ( 0 C g = ] ®

i L I_ o0 al ! HW _
Here, ( ¢ is viewed as vector, labeled by composite index @& = (Ol, € ; [5 ), and Ty as a matrix:

()"lﬂ& a {(: L\O\ = )(C l\q’ with normalization (Cﬁ } A (C ¢ ]q = | (%)

compare (MPS-1V.3.11)
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(7) is an eigenvalue equation for 1 and can be solved with standard linear algebra tools,

e.g. Lanczos algorithm (next section).

More generally: if ¥ isnot represented in site-canonical form, one obtains a generalized

Q)

eigenvalue equation of the form H?C 0= 3 R.C 0 with S(: defined by r.h.s. of (6) .

Use the 'eigenvector' with the lowest eigenvalue (= current estimate of ground state energy), say C% ,
to 'update' MPS, then move to next site, use SVD on C [¢] to shift orthogonality center to site £/ :
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'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.
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2. Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG-I.2
original idea stable version nice discussion

« Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H

« Prerequiste: an algorithm for computing || [y , for any vector [y

We seek the extremal value of E {\1(»& = L[ H (%) 0)
{w [ w)
Denote extremal value by 63 = wmin E[h{)\ = B Hl\'iﬁl (€3

The direction of steepest ascent of the functional & [(’Lﬂ] , evaluated at I—\p7 , is given by

'functional gradient”: %E_[N}} = m - M \'q/> (3
$ <y {w\y) SV DI
_ H -] 45 = | )
ety )

Moving in opposite direction will thus lower the energy:

E [ 4y -~ « \UM) k < E H'L(').S for small, positive &£ (s)

To find optimal value for o/, minimize E {\'Lﬂ = ot \’U(GDS w.r.t. the 'variational parameter' o ,
in the space K( = §{)m~i \"{'7 , (1&,,\5 S = S()«M %(1('7/ H (’Z['7 Z (A

Starting from the random initial state M.D , construct a normalized basis {I Vo), Iv.)} for this space:

14
[y’ @

Second basis vector: = b ) = \1},’) = R ) = (U {ulH vy) @)

—
normalization factor, orthonormalize = ag

such that (v, (v 5 = | w.rt to (19

— < s \(®) since <v',)v°')(:)o
Ll L= J{UI‘UI) = (U‘(\H‘U‘b7 + % @

real

First basis vector: v, =

Now find a matrix representation of H in this space: define

o = Ly dH ) 4= ol b = )

I

then )
I'H'Utb = "UJ L| + ['\537 QAo D]

hence in the space K, , the Hamiltonian has the matrix representation
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The ground state of Hk‘ , say l S 7!( , yields the optimal choice for o¢
]

Now we could iterate: use 13 7K| as starting point for another optimization step. Convergence is

rapid. Monitor quality of result by computing the residual energy variance,
2
i) = (H =&l - = GBI - Zyldluy (@

and stop when it drops below some threshold.

Krylov space

After L, steps, starting from (15‘07 , the resulting vector will live in

K, ( lsoy) S()@A{ lusy, ff (Uo7, H (ve) , ... , HE ot

=  'Krylov space of H over U, (dimension L +1 ). s

"

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K L. ,then compute its

ground state. (This is faster, since it amounts to using (. simultaneous variational parameters

instead of L. separate ones.) To do this, iteratively construct a 'Krylov basis' for KL,

Krylov basis — § (v, [U)), ... ‘UD}

As before: L:u. \150 = |3'(7 = [ ([ve Y —= ao fu,) (16
normaIizei
Third vector: &;L\-m) = |G;,> = H Z \U‘) CU\\'\lUD (1)
\1=°
=) - tsda = (U b W
) - <,_5||H|b.\) m
where by = [{RIGY = <ZuolWlu) (tq)

real

Note: (Uz,‘ H (Uo§ = D , since H |u‘,,> & Seu«.i ‘UQ/ \v()z (20

Fourth vector: \>3le3§ = 15D H (o) - Z \xr §(u| Hivy )

J-O
= H lzﬂ - \0‘17 a ~(U‘)L - |u°> 6 2

(20) ¥/

,—-_Jb——-ﬁ —_———, A
CRLICA <J‘\Hl15,_3 vty
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Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step: “)“H \'Um.> = (f‘j:m) = H\'U‘.,\) - Z. \U:}><U\\I 1w (u3)
J=°

= H‘Uq) - \‘U\? fa —~ Vu- Y Lw (26

with Q. = <1)‘th I'U',,\> LV\ = <U0\\ H’ l Uﬂ—-l> LZX)

[If it happens that ‘3“*‘ = o , pick an arbitrary | Uy, orthonormal to all |v:i§’ j =0 .. u ]

Throughout we have: <U'M‘|'{(‘D‘j7 = o for J =09 .. w2 (268
since (@
H \U‘J-7 & span i 6$+‘>/ \U:l7' Lo 9 ] (23}

Hence, rearranging (24):

Hwy = v, bk,

ooy ay ¢ W) by, @8

Hence, in KL , ( Qo Q, )
H has tridiagonal form: HKL ) by &, b,
by &, (°3
by« ‘
Q- be
b

\ /

Ground state of HK satisfies the eigenvalue equation (H K ); ‘ (L[,SL) J = Efls- (L"; )i
L Y
L .
{v, )4
%v 57 (‘[’3 )

are the best approximations, within the Krylov space K L of true ground state energy and ground state.

Eg and N/é‘? =

Thus

Note: N,é‘) can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from U3 ,

[}
The Lanczos scheme converges exponentially fast, with a rate ~ [gap to first excited state]/ C
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Summary

1. Start with arbitrary fuo?

2. First iteration step: (i) l§> = Hilwy
(i) 0 = (GIU)
Giy 167) = ) - aotud

3. General iteration step, for W>

o b, = GIED
(i) I ba o ,then [(vad = |GI)/b.

else, pick \U‘D as arbitrary normalized vector orthogonal to all \\ID, e fowa)

@ 15,7 = H)

(iv) G = <§v\ﬂ \Uu>
(V) ['i}m-(> = ‘{A}n‘-(? - (vl/\> Q. — hfv\-\) ‘Dl/\

and back to 3(i).

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable.
[Paige1972]
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DMRG-I.3

3. DMRG for excited states

AT AS (8 81 gl

N ¥ U v O

Suppose we have an MPS representation for ground state, | 3)

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to l%)

2y

CBIH 1) - A &alg) - D, {2\q7
Q)

EIE) = | and 4'@_%7 = o

Extremize:

Lagrange multipliers enforce

Extremization w.r.t. C,;t yields

« Co b
. « Cp P
R

=%

s' o (
P — W /\/\// &
built from AS @ C -tensors of ‘%'7

-tensors of 1)

built from |, &

Generic structure of this equation, in mixed-canonical representation of site 4 [compare (DMRG-1.1.7)]
(3) (3

t 06
HL Ct = ,)‘l CL + Al g{ (5) with Cy_cl =\ , l ﬁe: o (¢
6

cf. (DMRG-1.1.7)

Displaying indices: & '= (o, 8, £)

MY = Aled aq0” e - {ct‘*laﬂﬁe\‘”ﬂm

) ot “ c§% \
IR T ) O P I H .
o' P
with [ and R computed iteratively, " « ‘,- Afa(
¢ -(- ' - - ¢ , . W
R G 2 Sl U L

Index-free notation for (5): HiAY = A, 1A + lL‘ﬂ? / Uﬂﬁ) =0 (8



Define projector onto subspace orthogonal to |67 : PS = 1 - ‘3)(3\ (4)

. x
Iwith indices: ?SAI“ = 1° 0 Saga , S that ?ﬁa’ﬁ %k = 0 l (o)
@ 1L
Project (8) onto this subspace: Pﬁ H(?% - ‘3“3”"” = ’,\. Pﬁ IAY + o ()
—

(8):0

This is simply an eigenvalue problem, for ?3 H , in subspace orthogonal to IS) . It can be solved

using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to | 37 :
Given an arbitrary initial state  1Uo7 , project it onto orthogonal subspace, |u!) = Pﬁ A
)

and construct new Krylov vectors using

H\S’a“? = PﬁH (OM'(> - \UV\7 Qen - (U«\-(> ‘5: ()

Why not simply use excited states in KL ? Because numerical noise can cause the \U},ﬁ

. A
to be not exactly orthogonal, hence for J ‘n-2 IR \’JS Y x~ (o rather than 0.

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?ﬁ , as indicated above.

Block-Lanczos for excited states

. ao B( }
Standard Lanczos: represent action of H as
h\ ﬁ | bl
Hlue) = (Vo) 2 + luob =
b .
Block-Lanczos: start with set of M orthogonal vectors, \ j
ilfo’ L> , I = A M , and represent action of H as

H(’Uo/',,>= \vojs) .LS',,(“‘)L + \v‘/;\>(}3‘):\1

v

with (Go/:s \ u‘(,-l> = 0 ) <v‘13\ U]/i) = l\l .

and ((1‘\“' = <U'o/'|,lH (Uoli'?/ Qﬁ;)“c = <(flli(H‘Uo,i>
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etc. Then the lowest M eigenstates of block-tridiagonal matrix

give the Lanczos approximation for lowest M eigenstates of H
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4. Two-site update [Schollw6ck2011, Sec. 6.4] DMRG-1.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

D = 1) g te ) e 0 B L, B B B

6‘- o-ﬁ-h (l)
Then extremize simultaneously w.r.t. -~ 3
£ a8y - i =
C+ and B 8t —aC:F {HIHYG) 2RI Y
[ (4 1Y) ]
W
o« Ce Do R _
T 1" = 1 1 & C( ¢t
LY 7 < > '
¢ = ) 'LG' 1 ' A3)
4 ] 4\6:‘ y. - ) = N N
4 ) ’ ‘s A ¢
« [ 3
close zippers from left and right = A 04: Ce f Bes ! ‘

f ()
le' L‘f

a ™ .
[A) N
ﬁgggiﬁt; {l’li X [l{/(;)] = A [14'?)&“ with composite index 4 = (ul 6 o, ‘g)
[ 3

)
n \ * Pe—v—o —— % B <
le]w = : < Tv = > tV < fv t ©
C ' | c' l? lo—' J‘E‘
‘ «' F'A, A A —é—a: F' —

Lg_l we wew Eeu
”n
Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated 7(4(" :

t
~mka reshape o ﬁs"b n S \/

updated ['Lh = : g “ni)_D —>—<>—(—q+€ f @
D4

= —> o <¢—
DA DA T DA

Key point: S has Dd singular values, larger than the virtual bond dimension D of Mand 3 .
Hence, it explores a larger state space, in general also including more symmetry sectors!

ﬂﬁ B /'C »~
A\ + = a.‘f'{ ﬂl C o
Truncate down to D and reshape: ~ Ky () ( s U ) 5'(3 = X £ ‘ 6 @)
B4 D D D4 .
=

This concludes optimization of site «e . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain.
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