
MPS-II.1

1. Basis change

Recall: a set of MPS 

specified by given left-normalized tensors

defines an orthonormal basis for a state space 

Projector onto       : 

(sum over    implied)

Indeed: 

since 

Operators defined on can be mapped to using these projectors:

Simplest case: 1-site operator acting only on site    : 
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Each            defines an isometric map

to a new (possibly smaller) basis:

old basis new basis

Each such map also induces a transformation of operators defined on its domain of definition. 

It is useful to have a graphical depiction for how operators transform under such maps.

During iterative diagonalization, the space         is constructed through a sequence of isometric maps:

(possibly involving truncation)

Consider an operator defined on                     , represented on           by 

What is its representation on           ?

Explicitly: 

Similarly, for operator with non-trivial action also on site    : 

Just replace        by              in (9):

Thus, the  isometry          maps the local operator into an effective basis associated with           and 
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Consider spin-      chain:

On-site terms:

Matrix representation in       :

'no hat' means 'matrix representation'

For later convenience, we write the spin-spin interaction in covariant (up/down index) notation:

covariant index combination,
sum on                       implied!

In the basis the Hamiltonian can be expressed as 

is a sum of single-site and two-site terms.

Nearest-neighbor interactions, acting on direct product space,                          :

We define the 3-leg tensors        with index placements matching those of      tensors for wavefunctions:

Matrix representation in                     :

MPS-II.2

is a linear map acting on a direct product space:

where is the 2-dimensional representation space of site       . 

where we defined 

the operator triplets 

with components 

2. Iterative diagonalization
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Diagonalize site 1  

is diagonal, with matrix elements

Eigenvectors of the matrix              are given by column vectors of the matrix                         :  

Eigenstates of operator             are given by:

Add site 2

Diagonalize                 in enlarged Hilbert space, 

site index:

Matrix representation in                     corresponding to 'local' basis,                             :

We seek matrix representation in               corresponding to enlarged, 'site-1-diagonal' basis, defined as

We define the 3-leg tensors        with index placements matching those of      tensors for wavefunctions:

incoming upstairs, outgoing downstairs (fly in, roll out), with        (by convention) as middle index.

chain of length 1

chain of length 2

To this end,  attach                   to in/out legs of site 1, and                  to in/out legs of site 2: 

Matrix 
acting on      : 

Matrix 
acting on             : 
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First term is already diagonal. But other terms are not.

Now diagonalize              in this enlarged basis:

is diagonal, with matrix elements

To this end,  attach                   to in/out legs of site 1, and                  to in/out legs of site 2: 

Eigenvectors of matrix        are given by column vectors of the matrix                                          :  

Eigenstates of the operator        :

Add site 3

Transform each term involving new site into the 'enlarged, site-12-diagonal basis', defined as

For example, spin-spin interaction,                :

Local basis: 

enlarged, 
site-12-diagonal 

basis:
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Then diagonalize in this basis: , etc. 

At each iteration, Hilbert space grows by a factor of 2. Eventually, trunctations will be needed…!
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Consider tight-binding chain of spinless fermions:

MPS-II.3

Goal: find matrix representation for this Hamiltonian, acting in direct product space

while respecting fermionic minus signs:

First consider a single site (dropping the site index      ):

Hilbert space:

Operator action:

The operators                                                      and   

Check: 

For the number operator,                                 the matrix representation in         reads:       

where 

Useful relations:

is representation of 

local index: 

local occupancy

Shorthand: we write where         means 'is represented by'

upper case denotes 
matrix in 2-dim space 

lower case denotes 
operator in Fock space

have matrix representations in      :

3. Spinless fermions
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'commuting         or          past               produces a sign'

Intuitive reason:          and          both change     -eigenvalue by one, hence change sign of 

[exercise: check this
algebraically, using 

matrix representations!]

For example: 

non-zero only when acting on

Now consider a chain of spinless fermions:

Hilbert space: 

Complication: fermionic operators on different sites anticommute: for 

Define canonical ordering for fully filled state:

Now consider:

To keep track of such signs, matrix representations  in                   need extra 'sign counters', 

tracking fermion numbers:

Here      denotes a direct product operation; the order (space 1, space 2, …) matches that of the 

indices on the corresponding tensors:

Check whether 

Algebraically:

subscripts denote site numbers

(shorthand: omit unity)

Similarly:

non-zero only when acting on
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More generally: each        or          must produce sign change when moved past any          or        , 

with             .   So, define the following matrix representations in 

'Jordan-Wigner 
transformation'

with 'Z-string'

Algebraically:

Similarly: 

Exercise: verify graphically that for

Solution:

extra sign!

In bilinear combinations, all(!) of the      's  cancel. Example: hopping term,                      :
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since at site      we have 

non-zero only when acting on                                        ,

and in this subspace, 

Conclusion: and similarly, 

Hence, the hopping terms end up looking as though fermions carry no signs at all. 

For spinful fermions, this will be different.

[using (10b)]
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Consider chain of spinful fermions. Site index:                         , spin index: 

First consider a single site (dropping the index       ):

Hilbert space: local index: 

constructed via:

Define canonical order for fully filled state:

To deal with minus signs, introduce

We seek a matrix representation of       in direct product space 

(Matrices acting in this space will carry tildes.)

MPS-II.44. Spinful fermions
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The factors         guarantee correct signs.  For example                                            :

(fully analogous to MPS-II.1.17)

Algebraic check:

Now consider a chain of spinful fermions (analogous to spinless case, with        instead of         ).

Each        or          must produce sign change when moved past any          or        , with             .   

So, define the following matrix representations in 

'Jordan-Wigner 
transformation'

with 'Z-string'

Remark: for spinful fermions (in constrast to spinless fermions, compare MPS-II.28), we have 

For example, consider           ; action in                  : 

and

In bilinear combinations, most (but not all!) of the      's  cancel. 

Example: hopping term                      :                  (sum over s impied)
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here Z's cancel

Bond            indicates sum 

Creation: outgoing           or incoming  

Convention:  annihilation: outgoing       or incoming  

                 

Similarly: 

Example: hopping term                      :                  

final charge:

initial charge:

final charge:

final charge:
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