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Problem 1 (14 points)

Consider a theory invariant under a global SU(2) symmetry with two scalar
fields, ¥ and @, each transforming in the adjoint representation of the group,
ie.

Y=Y =UXU",

- =UdUT,

where U € SU(2) and t stands for Hermitian conjugation.

a) Assume that the scalar fields do not interact with each other. Then the
most general potential for each scalar field could involve the invariants

i) trZ,

i) trz?

i) trZ?,

iv) trz4,

v (@22,
vi) det(Z2),
vii) (det(Z2))?,

with Z = 3, ®. Which of the above invariants are identically zero?
How many of non-zero invariants are independent ? (Hint : Bring the
fields into a simple form by a group transformation.)
Use this, to write down the Lagrangian for ¥ and .

Sol. [3P] As Z transform under the adjoint representation, it can be

written as . 5 . )
arma A At —i
Z—)\T:2()\1+i)\2 -3 )7 (1)
where a = 1,2,3, and T are the generators of SU(2). Using the
identities : A
tr'l" =0,
. 1 ...
trT7 = =Y,
2
) 1 , .
Tk = 1 (6751 + 20’ T")
we have

trZ = \*trT* = 0,
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ii)
1
trZ% = tr(A“TNTP) = AN tr 77" = AN

iii)
trZ% = tr(A“TONTONTC) = NN A tr (T T T°)
1
= ZA“A”AC tr((6°°1 + 2ie™ T%) T)
1 1
= AN tr(T°) + z’i/\“kb)\cg“b" tr 7T
1
= ipATNAee =0,
iv)
trZ* = tr( AT N TP\ TN T?)
= NN NN tr (T TP 7T
1
=1 A NN (69T + 20 T°) (6T + 2ie“™™ T™))
1
— 1_6>\a)\b)\0)\d (2(5ab60d o 4€abZ€cdm trTme)
1 aybycyd ab scd abl _cdl
= S ANXNT (205 — 27 e )
1
— _)\a)\b)\cAd (250,1)6011 o 2(6ac5bd o 5ad6bc))
16
1
— ZAAPN\NE
8
1
= Z( N2\ 2
8( ) ?
v)
(t 22)2_ 1/\a)\a 2_ 1()\a>\a)2
T = 9 — 4 ’
vi)
1
det(2) = =7 (AA%),
vii)

(@et(2)? = (=3 (00N = 5 X,
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We conclude that at most two non-zero invariants are linearly inde-
pendent, e.g. trZ? and (trZ?)2.
The Lagrangian for ¥ and ® reads :

L= tr(0,X0'%) + tr(0,0 0"®) — V (X, D),
with
V(E,®) = m2 trE? + Ay (tr52)” 4 m2 trd? + Ag (trd?)*. (2)
Arrange the potential such that the vacuum expectation value (vev)

of each scalar field is non-zero. Find the vev by explicitly minimizing
the potential.

Sol. [3P] The potential 2| can be rewritten as

2 U ’ ) U3 ’
V(E,(I)):)\l tr2 —5 +>\2 tro —? .

. Rewriting & =

ms ma

A

where A\j = Ay, Ao = Ap, v =
@*T* and X = p*T*,

, and vy =

7
B

A A
V(g 6% = 2L (9% —02)° + f (670" —v2)”.

4
Minimizing the potential :
aV c,6 .C a
Ipr = Mg — 07" =0,
implies

at the minimum. Similarly for ®, we get
0" =13,

How many generators are broken? Does the answer depend on the
"direction” of the vacuum ?

Sol. [1P] If ¢ || ¢* there are two broken generators and the SU(2)
symmetry is spontaneously broken to U(1). If the ¢® Jf ¢* there are
three broken generators and the SU(2) symmetry is completely bro-
ken.
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d) Assume now that the global SU(2) is made local. Construct the ap-
propriate covariant derivatives for ¥ and &.

Sol. [3P] The derivative of Z transforms as

0.7 — 0,(Z) = 0,(UZUTY
= (0, U0)ZU" + U(0,2)UT + U Z(8,U") ,

for an infinitesimal transformation U = [ + ia*T*
0, U =10,0°T",
8MUJr = —10,a"T",
0uZ —=(i0,a"T*) Z + (I +ia*T*)(0,2)(I — iaT*) + Z(—i0,a"T*").
Thus
00,7 =i(0,a")[T°, Z] + ia®[T*, 0, Z].
From here we construct the covariant derivative as follows
D,Z =0,7Z+ad(A,)Z =0,Z + [A,, Z], (3)
as we require that the covariant derivative to transforms as
D,Z —-U(D,Z)U".
To see this is the case, we recall that the gauge field A, transforms as
Ay — A, =UAU +U8,U (4)
and for an infinitesimal transformation

§A, = ia®[T% A,] — i0,0°T"

Then, we can check that the covariant derivative [3| transforms to

(D, Z) =(0,U)ZUT +U(8,2) U + U Z(0,U")
+ [UA U+ U, U UZUY
=U(0,2)U' + [UAUT, UZUT]
=U(0,Z + [A,, Z))U",
=U(D,Z)U"
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Note that the gauge field A, takes values in the SU(2) algebra, and
can be expressed in terms of three real fields Aj

A, = —igApT",
and the covariant derivative can be rewritten as
(D,Z)* = 9,\" + gs“bCAZ)\C,

Compute the masses of the gauge bosons on top of the vacua you
found in b). Is it possible to find that all gauge bosons have different
masses 7 Explain.

Sol. [4P] The lagrangian for ¥ and ® is now
L = tr(D, DY) + tr(D,® D'D) — V (3, d).

The mass terms for the vector bosons comes from the terms
2

g abc c ab’c’ pb' !
Lo = (A (0 AYX) (5)

in the Lagrangian. If ¢ || ¢* there are two broken generators and the
SU(2) symmetry is spontaneously broken to U(1). In this case we can
choose a unitary gauge in which

" =103
P = 1v90%3.

Then the mass term [Bl reads as :

Ly = 5 (0] + v3) (£ AL 5) (e AL 6°%)

(v 4 v3)(ALAD — ADAD).

In this case Az is massless, and A; and Ay have masses m = gy/v} + v3.
If o* Jf ¢ there are three broken generators and the SU(2) symmetry
is completely broken. We can choose a unitary gauge in which ¢® =
110%3 and ¢* = vyn®, where n® is a unitary vector parametrized by
the angle 6 between the directions of ¢* and ¢* as :
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n! =siné,

n? =0,

n? = cosb.

Then the mass term [Bl reads as :

2 2
g abc c ab’c! AV ¢ g abc c ab'c’ AV, c
Ly = Zv; (™AL (e AYS 3)+—2 vy (e Alnc) (e Al

/

)

2
= g—QUQ(Ab AP — A3 A3) g—2v2(Ab Ab — (Al sinf + A% cos6)?)
o9 I\t (Tl 9 2\pt H I
_9 ((v2 + v cos? )AL + (03 + 03) 427 + v2sin? A3
2 1 2 “w 1 2 “w 2 n
— 203 sin f cos HALAi).

The mass of A? is again m = gv/(vf +v3). However, we need to
diagonalize the mass terms for A; and As,i.e. :

9—2(A1 A3 vi +vicos*d  —v3sinfcosf) (A

2 —v2sinf cosf v2 sin® 0 A )

After computing the eigenvalues, we get that the masses square are
2

m? = % (vf + 3 & \/QUSU% cos(20) + vf + v§> :

In the case § = 7/2, the three gauge fields have different masses :
myp = gu;

my = g4/ (v + v3)

ms = gus.
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Problem 2 (12 points)

Consider a theory invariant under a global SU(N), N > 4 symmetry.
Take X to be a symmetric N x N matrix scalar field that under an SU(N)
transformation behaves as

X X' =UXUT,

where U € SU(N) and T stands for transpose.

a)

Write down the most general, renormalizable, SU(N)- and Lorentz-
invariant Lagrangian for X in four spacetime dimensions.

Sol. [4P] Lets begin by constructing SU (N )-invariants.
X - X' =UXU",
implies
XS X" =Ur XUt

We notice also that X = X7 and X* = X'. From here, it is easy to
show that tr[X X ] is invariant :

tr[ X XT] — tr[ X' X1 = tr[UXUTU*XTUT] = tr[ X XT] .

Similarly (tr[XX])? and tr[X XTX XT] are invariant. No cubic term
in X is invariant since an even power of X is required. Finally no det
is considered as N > 4. The most general Lagrangian is then :

L = tr[(90,X)(0"X) 1] — m? tr[ X XT] — X tr[ X XTXXT] — 5 (tr[X XT])?

Assume now that we gauge the SU(N) symmetry. Construct the ap-
propriate covariant derivative for X. If you just “guess” it without a
derivation, you have to show that it indeed transforms as a covariant
derivative.

Sol. [8P] The derivative of X transforms as

9, X = 0,(X") = 0,(UXUT) |
= 0,0)XUT +U0,X)U" +UX(0,UT),

for an infinitesimal transformation U = I + ia®T®, where T are the
generators of the SU(N) Lie algebra and a = 1,..., N> — 1 :

0,U = i9,a"T",
0,U" = i0,0°T"T = i9,0"T",
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90, X —(i0,a°T)X + (I +ia°T*)(9,X)(I +ia"T*") + X (i0,a*T").
Thus

60, X = i0,a°T*X +i0,a"°XT" +ia"T*0, X +ia"0,XT*"
= 2i0,a"(T*X) g + 2ia*(T*9, X ),

T . . .
where (Y)g = % From here we construct the covariant derivative
as follows

D, X =0,X +sym(A,)X
=0, X +2(4,X)s
=9, X +A,X+ XA/,

Then, recalling equation 4 we can check that the covariant derivative
transforms to

(D, X) = (0,U)XU" + U0, X)U" +UX(0,UT)

+2((UAUT + U UNUXUT))

= (0,0)XUT + U8, X)U" + UX(9,U")
+2(UAXUT) +2(UUUXUT),

=U (0, X +2(A. X)) U+ (0,U)XU" +UX(9,UT)
—-2(UU9UXUT),

=U (0, X +2(A, X)) U",

=U(D,X)U"

Note that the gauge field A, takes values in the SU(NN) algebra, and
can be expressed in terms of N2 — 1 real fields Al

A, = —igApT",
and the covariant derivative can be rewritten as

D, X = 9,X — 2ig A3 (T*X)
= 0,X —igAl (T°X + XTT)
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Problem 3 (12 points)

Focus only on the leptonic sector of the Standard Model supplemented
with three right-handed neutrinos.

a)

Take the Yukawa couplings to be zero. What are the global symmetries
(apart from the gauged SU(2) x U(1))?

Sol. [3P] In the absence of Yukawa couplings, the leptonic sector
consists only of the kinetic terms for the fields, i.e.

Ly, =i(L)*"v*Du(Lr)a +i(er)* v Duler)a + t(vr) v 0u(Vr)a

possibly supplemented by a Majorana mass for the right-handed neu-
trinos; in what follows, let’s assume that this term is absent. Here
a = 1,2,3 stands for the generation index and D, is the covariant
derivative for the corresponding fermionic field.

From the above we see that the Lagrangian is invariant under

(L)* — (U, )s(Lp)
(er)® — (Uep)i(er)’
(vr)* — (Unp)i(ve)" .

where Uy, , U, U, € U(3) and independent of each other. Thus, the

ER? VR
global flavor symmetry is

Gr =U(3)* =U(3)r, x UB)e, x U(3),, -

What are the symmetries once we switch on arbitrary Yukawa cou-
plings ?

Sol. [3P] In the presence of arbitrary Yukawas, there is a global U(1).
(However, and this is very important, when there is a Majorana mass
term, this symmetry is explicitly broken.)

What is the symmetry if we assume that the Yukawa couplings are
non-zero diagonal matrices ?

Sol. [3P] For diagonal Yukawas, each generation rotates separately,
meaning that there will be U(1)3.

(As in b), when there is a Majorana mass term, these symmetries are
explicitly broken.)

Do your answers for parts a) and b) change if the right-handed neu-
trinos are removed ? Explain.

Sol. [3P] Let us now remove the right-handed neutrinos.
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a) We can see the difference in the kinetic terms of the leptons that
now reads

Ly, =i(LL)*" " Dy(LL)a + i(er)* V" Dyler)a

meaning that the symmetry is now U(3)?%.

b) For arbitrary Yukawas, there is now a global U(1)? symmetry, which
is responsible for the usual lepton flavor number conservation (lepton
number is conserved for every generation).
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Problem 4 (21 points)
Consider the process

e~ (p)et (p2) = 1 (ps)u™ (pa)

and assume that all fermion masses are zero.

In the Standard Model, at tree-level, this can occur through the exchange
of a photon or Z boson (you can neglect the Higgs boson exchange in the
zero-fermion-mass limit). The interaction of charged leptons with photons is
given by the vertex iey,, while their interaction with Z-bosons is given by

ie/(2sin(20w))(gvyu + ga¥us)-

a) Starting from the (covariant) kinetic terms of the charged leptons,
show that gy = (1 — 4sin?#fy) and g4 = 1.
Sol. [2P] The electro-weak sector of the Standard Model includes the
term

Lew D iZIEjID%' (6)

where ¢ € {Ep,eg,...} with B, = (Z) )
L
The covariant derivative is given by

: ara Y
D, =0, —igWiT} — zg’gBM, (7)
with
B, = cop Ay —so, Z, and W) =sg, Ay, + coy Zy, (8)

where we defined cp,, = cos(fw ) and sy, = sin(fy ).
Therefore,

. Y ‘ , Y ,
Lew D Eiy" (QWSTE + g/EBu> b7+ éiﬂuglgBuejR' (9)
Using the above expressions for B, and ij we obtain
Lew D
. Y; S Yr
) ZM |:Ei7“ (gCQWTE - ngGWT) Ei - eg%ryug/SGW 76%] + (10)
. Y, A A Yo .
+ A, [E}J'y“ <959WTE’ + 9/09W7L) E] + eﬁv“g'cewgeﬁ} :
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Using that e = gsp, = ¢'coy,,, Ti (er) = —1/2, Y (er) = —1 and

Yr (er) = —2, we obtain
Zy  Joon2 2\ 1 b o
Lew DS@ ” ey §(SGW — Cp,, €L+ ERY eseweR] +
w w -
A, [—éi’y“eei + éﬁ’y“eeﬂ =
2e -fju2 i1 td & oyt ed
:Zusze e sp e — 5eLYer — A eyt = (11)

w L

=Z, € [éj,yu (4S§w —(1 —i—%)) ej} _ Auéje’y“ej —_
QSQQW

e
= — ZM
2829W

& [(1—4s5, ) 7" +7"75) € — Auéere

Therefore,
gv=1—4sj and gy=1. (12)

b)+c) Split the above vertices into vertices that describe interactions of vec-
tor bosons with fermions of definite helicities. Show that the amplitude
ete™ — ptp~ can be written as

+
s
-
=~
i~
3
[\V]
—_— — —
-2
=
S
=y
£
—~
3
_ L =
=
3
w
=
€
~
e
b
\_/\E/v
_|_

+ArrO(p2) Y wru(p1)u(ps)ywrv(pa) |

where wr/r = Pr/rp = (1 £15)/2 are projectors on different helicity
states and s is the square of the center-of-mass energy. Express the
coefficients A;; through the couplings g4 v.

Calculate all the relevant helicity amplitudes in terms of spinor pro-
ducts.

Sol. [6P]
Define for brevity : 0o = 0(p2), uy = u(p1), 3 = u(ps) and vy = v(p4).
Then M, is given by

—iN
—(p _:7; )zu;», (iey”) vy
1 2

=S

M, =y (iev") uy
(13)

- 9
e -
S M, = ?vgfy“ulugfmm.
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Using the Feynman-t'Hooft gauge for the Z boson propagator in M4
we obtain

. # _ N . v
M, — o, |1 (gv + 9A'Y5)} L 0 {ze'y (gv +9A75)] o

2520, s—m% 2520y,
(14)
Or, equivalently,
ie? 1
My = Vo' s T V1G4 +
7z 4S§9w o m2z [ 27 Vs U1U3Y L Y5V49 A
+09y Y51 Uy, vagaGy + (15)
+U2Y U1 Uz, Y5va9v ga+
+172’7”U1713%U49x2/ ]
Define for brevity
M = vy wuntigyw;va, (16)
with i,j € {L, R}.
Using wy, + wgr = 1, we obtain
ie?
M, = ~ My + Mpr + Mgr + Mgg] (17)
To obtain M, using 75 = (wr, — wgr), we first calculate the following
D2y Y5t Us Yy Vs Vagh =
= 0oy (W — Wr) urlsyy (WL — Wr) V4gh = (18)

= (Myp, — Mpr — Mg + Mgg) g3
oYM ysur gy, vagagy = (Mpr + Mpg — Mg — Mggr) gagy  (19)
VoY ur sy, Ysvagvga = (Mpp — Mpr + Mg — Mggr) gvga  (20)
?727“U1ﬂ3’mv4912/ = Mpr + Mg+ Mg + Mgg) 9&2/ (21)
Therefore, for Mz we obtain
ie? s
s 43, (s —m}) [ov 94 Mozt (22)
+ (9\2/ - 9124) Mg+ (ng/ - 9,24) Mg+ (gv — 9A)2 Mg ]
Finally, we obtain
Mgy =Mz + M, =
ie? (23)
[ALpMpp + AppMir + ArpMer + ARRMRR]
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with )

s(gv + ga)
4S§9W (s — m22>7

s (gv — 94)
4S§9W (s —m%)’

Arpp =1+

The photon vertex makes no distinction between fermions with dif-
ferent helicities. However, for the Z boson vertex we obtain that it is

proportional to (gy + ga) wr, + (9v — ga) Wr-
From b) we have :

ij . 7:62
Z+y — ?AijMij' (25)

Calculate the sum of the helicity amplitudes squared. Show that this
sum can be written as

Z|./\/l|2 X;(1+ cos®6) + Xy cosf

hel

where @ is the u~ production angle relative to the e~ direction. Express
X1’2 in terms of ATJ
Sol. [10P] We have

DIMPE= Y MY = Z AGIMy* - (26)

hel i,je{L,R} ,JG{L R}

In the following we will denote the helicity opposite to that of 7, j by
7, respectlvely Below we will make use of : w;yo = yows, {75, Vu} =

(79 = 1, 7% (9")7 9% = 4, (75)" = 75 and ¥ = 91, among other
identities.

We have
(Myl? = My MY, =
T

= Uy Wity Uz, wjvy - Ule (%)T 70U3U1W1 (’YV)T 7002 =

_ _ 0 0
= VY Wit Ugy,w;va Ulwﬂ YoU3 UJ{WW Vg = (27)
W_/ H/—/
=V4w; =ujw;

= tr [pﬂrﬂy%fyﬂwi} tr [pg’y“wjp4w3%} :
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Using that pw; = w;p, we obtain
Migl? = tr [ tr g o] =
= P1aP2BP3vP4s"
o v 1 1
tr {7 7S (L 75)} tr {W’n@ (14 75)7‘5%} = ()
= PraP2sPsyPasd (N0 — Pyt 4+ ny? L, ie®Pr) .
(S, = 0 + S i)

The n is a symmetric tensor, while ¢ is anti-symmetric, therefore all
“n-” contractions vanish. Therefore, we obtain

IMij|? = Ap1ap2sps,pas (107 — n®Pn® 4 o™ —

— naﬁn% + 477aﬁ7775 — naﬁnwﬁ +
+ 0" = " — (), (), e, ) =
—_——

==2(no%nhr—nor1yhs)
= 8P1aD28P3+Pas (29)
: [n“‘snﬁ” + 0" + (), (£); (1™ — 0"’ 5)] =
= 8( (p1 - pa) (P2~ p3) + (p1 - p3) (P2 - pa) +
+ (), (@), (1 o) (02 p3) = (01 1) (P2 p)] ).
The Mandelstam variables for m, = m, = 0 are

s =2p1-p2=2p3-ps
t=—2p1-ps=—2p2-ps (30)
U= —2p; - py= —2ps-p3
We therefore obtain
IMp = [Mggr|* =16 (p1 - ps) (p2 - ps) = 4u”

31
IMpgl” = [Mpge|* =16 (p1 - p3) (p2 - ps) = 41> (31)
Therefore
4et
Z M| = e [u? (A7L + ARg) +* (ALg + ARp)] - (32)
hel

In the following we consider the process from the center of momentum
frame.
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Due to 4-momentum conservation we have : p; + ps = p3 + ps.

:>E1:E2:E3:E4EE:\/7§. (33)

We furthermore express ¢t and u through s and 6 :
t=—2p-p3 = —2(E1E3 — |pi|[ps] cos ) =
2 S
= —2FE* (1 —cosf) = —5 (1 —cos@) (34)

u=—2p -py = —2E*(1 —cos(m —0)) = —g (1+ cosb)
Finally, we obtain

Z IM|? = e* [(1 4 cos 0)> (A7, + A%p) +

hel (35)

+ (1 —cosh)” (A7p+A%.)] = X1 (14 cos 0)* + X, cos
with 4 (22 2 2 2

Xy =" (AL, + AR+ Alp + A%p) (36)

Xo =2¢* (AL, + Ajp — Alp — ARy)

Since the cross-section for ete™ — u*p~ is obtained from Y |[M|? by
integrating over the scattering angle and since

1

/dcos@ cosf =0,

-1

the scattering cross-section is proportional to Xi(s). To study Xs(s),
one can define the quantity

1 0
[dcosfdo/dcosd — [ dcosfdo/dcosb
0 “1

A=
1 0 ’
[ dcosfdo/dcosd + [ dcosfdo/dcosb
0 21

which gives the fractional difference in the number of negatively char-
ged muons which are produced in the forward and backward hemis-
pheres, defined w.r.t. the electron direction of motion. Calculate the
above quantity in terms of X .

Sol. [2P] The differential cross section for e”et — p~ ™ reads

1
— > [MJ?

d_O' o 4 hel (37)

dQ  64n2s
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1
where the 1 factor comes from averaging over initial helicities.

The total cross section is given by

! do
o= [ —= dQ — sm 0dodp =27 dC9 (38)
ng

We define
1 1
_ do 2 9
F:27T/ dcadce 447TS/0 dz (X1(1+z)+X2z):
2 4 1
= X1+ =X
di7s (3 1 2> ’ (39)
B=2 L/@(i o __2 L/ﬂ<1 (X1 (1+22) + Xo2)
=27 Cg—=— 2 z z) =
1 “dcg  4tms 1 ! 2
2 4 1
- CX - X, ).
d47s (3 2 2)
Therefore F_.B 3x
- 2
= = ——. 4
A F+B 8X; (40)

f) Find A in the small energy limit s < m% and in the Z-resonance limit

s — m?%, where the photon exchange can, effectively, be neglected.
Sol. [1P]

From e) we have :

3sg% csc?(20w) [2s — 2m3, + sgd csc? (20w )]

A= 16(s — m%)? 4+ 8g% s(s — m%) csc?(20w ) + (93 + 9%4)2s% esc*(20w)

(41)

s
In the limit s < m%, i.e. for — < 1, we have
myz

Als < m3) = 3—42——3 +0<P%r)<o. (42)

8 sin?(20y,) m%
Whereas in the limit s — m?% we have

39794

2\
A@_émﬂ__@%+9®2

Problem 5 (17 points)

Consider the leptonic Yukawa sector of the SM with only two generations
and including the right-handed neutrinos.
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a) Write down the most general, renormalizable mass terms for the lep-

tons that are compatible with the SM symmetries.
Sol. [2P]
The most general mass term comes from the Yukawa-Interaction

—Y;g.e)EiHe% — Y;(-V)EiiO'QH*Vg% +h.c.,

J

which after SSB takes the form

LDirac = _Mz‘(jE)éiLe{% - Mi(;/)ﬂz”{%
where i, j € {1,2} run over lepton generations, and includes the Ma-
jorana mass term

Ly iR T i
‘CMajorana - _§Mz’j v Cvg.

Now take the Dirac mass matrix of the neutrinos to be diagonal and

the electron/muon Dirac mass matrix to have the following form (in

the basis of weak interaction eigenstates)

o (lal* ab’
M© =m (a*b |b|2) .
Here, m is a parameter with dimensions of mass, and a,b complex.
In the following, assume that the Dirac masses are the only masses
in the Yukawa sector. Now go to the mass state eigenbasis and find
the flavor mixing matrix V' that appears in the interaction between
the mass eigenstates and the gauge fields. Hint : You may use the fact

that the diagonalization preserves the determinant and the trace of a
matrizx.

Sol. [5P]

Since Mi(j”) is already diagonal, we only have to diagonalize Mi(je). Since
it is hermitean, we only need the unitary matrix L.. Hence the PMNS-
matrix (analog of the CKM-matrix) will be given by

V=1L,
To find L., we note that the eigenvalues mq, moy satisfy

mymey = detM© =0

my +my = trM© = mr?
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where we defined r = 4/|a|? + |b|2. So the eigenvalues are given by

2
m; =0, mg=mr",

and the (normalized) eigenvectors are

I A N
Ul—; —a* ]’ Uz—; b

Then, the PMNS-matrix (up to non-physical phases) is

v ( cos fe X sin&ew) |

—sinfe ™ cosfe’x

where we defined sinf = |a|/r and cosé = |b|/r.

Reintroduce the most general mass term from part a) and consider an
arbitrary Dirac mass matrix. Without an explicit calculation, argue
how many independent and physical parameters the new matrix V'
will have.

Sol. [5P]

When the neutrinos have both a Dirac and a Majorana mass term,
then they are in general Majorana fermions. Therefore, we cannot
use phase re-definitions (of the neutrinos) in order to rotate away
phases in the PMNS-matrix. Hence, we can only use the (left-handed)
electrons/muons to remove 2 phases. So, in general, V will have 1
angle and 3-2=1 phase.

Will there be a physical CP-violating phase ?
Sol. [1P] Yes.

Finally, consider a situation similar to part b), but with 3 generations
of leptons (again, consider only Dirac masses). The neutrino mass
matrix is also diagonal and the electron-like lepton mass matrix has
the form (in the basis of weak interaction eigenstates)

la|> ab* 0
MO =m|ab B> 0 |,
0 0 |?

where m is a parameter with dimensions of mass, and a, b, ¢ complex.
How many independent parameters will the matrix V' have now ? Will
there be a physical CP-violating phase ? Explain.

Sol. [4P]
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Now the PMNS-matrix is given by

cosfe™™  sinfe® 0
V = | —sinfe ¥ cosfex 0] ,
0 0 1

so it has 1 angle and 2 phases. However, we can see explicitly that the
phases can be removed by the lepton phase re-definitions by writing

e 0 0 cosf sinf 0 e~ ixte) 0 0
V=0 ex 0 —sinf cosf 0O 0 10
0 0 1 0 0 1 0 0 1

Hence, there is no CP-violating phase.
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Problem 6 (8 points)

a) Draw the tree-level Feynman diagrams for the following decays
D’ - K—n™,
D’ — Ktn—,

with D° = |ci) , K~ = |su), KT = |5u) , 7t = |ud) , 7~ = |ud). These
are mediated by the W boson.

Sol. [4P]
Lo
, Va } =
W w
Do {O > \/cs > 5} /(-—
u < 7

sb&+
"
u )

FIGURE 1 — Tree-level Feynman diagrams

OQ
%
Q
%

b) Estimate the ratio of the two decay rates

I(D° — K—n+)
[(D0— Ktr)

Use the following approximation for the CKM matrix

Vud Vus Vub
Vekvr = | Vea Ves Vi
Via Vis Vi
1—X2/2 A AX3(p — in)
= Y 1—)2)/2 AN? + O\,
AN(1—p—in) —AN? 1

Page 23 of



with A = sinf¢ (¢ is the Cabibbo angle).
Sol. [4P]

(D° — K—n) ?

['(D0— Ktr)

Vud‘/cs
Vus‘/cd

(1-X%/2)°
e

1_)\4
X2

~ 380

2

In PDG R = (3.37 £ 0.21) x 1073 ~ 1/300, page 54 https://pdg.
1bl.gov/2008/1istings/s032.pdf|and https://pdglive.1lbl.gov/
BranchingRatio.action?desig=50&parCode=S032&home=MXXX035

Problem 7 (16 points)

Consider a Higgs theory of a scalar field ¢ transforming under two dif-
ferent abelian gauge symmetries U(1) and U(1)" with gauge fields A, and
A, and gauge couplings g and ¢', respectively. Assume that the charges of ¢
under the two symmetries are ¢ and ¢'. Assume that the absolute value of
¢ has a non-zero vacuum expectation value (|¢|) = v. Write down the mass
matrix for the gauge fields.

a) Which combination of the two gauge fields remains massless ?

b) Which combination gets a mass as a result of the Higgs effect 7 What
is the value of the mass?

Sol. [16P]

Let’s first write down the mass matrix for the gauge field. We star
from the lagrangian

L= (Duo)"(D") = V(9),

where the covariant derivative is given by

Du¢ = 0,6 — iqgA,d —iq' g' A},
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The mass term for the gauge bosons reads as :

Ly = (q9Au+q'g'A,) (qgA* + ¢ g A" )W
1 , Av
= 5 (A, A )M (A,M> :

where M? is the mass matrix
2 2
A2 — 92 ( 79 q%g%) |
qq9'99" q"g
Lets diagonalize M?2.
detM? =0
trM? = 20%(¢*g* + ¢*¢g"*) = m*.

As expected one gauge boson remains massless and one gets a mass
m = /2(q%¢*> + ¢?¢”?)v. The corresponding (normalized) eigenvectors
are :

: (q g/>
(g2 + ¢%¢" \—19 ’
: (qg)

/g% + ¢2g" qq

From here, it follows that the massless combination is

q9'A,— qgA;,
/ng2 + q’29’27

while the massive combination is

B, =

q9A. +d'g' A,

/q2g2 + q/29/2

B, =
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