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Problem 1 (14 points)

Consider a theory invariant under a global SU(2) symmetry with two scalar
fields, Σ and Φ, each transforming in the adjoint representation of the group,
i.e.

Σ→ Σ′ = UΣU † ,

Φ→ Φ′ = UΦU † ,

where U ∈ SU(2) and † stands for Hermitian conjugation.

a) Assume that the scalar fields do not interact with each other. Then the
most general potential for each scalar field could involve the invariants

i) trZ,

ii) trZ2,

iii) trZ3,

iv) trZ4,

v) (trZ2)2,

vi) det(Z),

vii) (det(Z))2,

with Z = Σ,Φ. Which of the above invariants are identically zero ?
How many of non-zero invariants are independent ? (Hint : Bring the
fields into a simple form by a group transformation.)
Use this, to write down the Lagrangian for Σ and Φ.

Sol. [3P] As Z transform under the adjoint representation, it can be
written as

Z = λaT a ≡ 1

2

(
λ3 λ1 − iλ2

λ1 + iλ2 −λ3

)
, (1)

where a = 1, 2, 3, and T a are the generators of SU(2). Using the
identities :

trT i = 0,

trT iT j =
1

2
δij,

T jT k =
1

4

(
δjkI + 2iεjk` T `

)
,

we have

i)
trZ = λa trT a = 0,
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ii)

trZ2 = tr(λaT aλbT b) = λaλb trT aT b =
1

2
λaλa,

iii)

trZ3 = tr(λaT aλbT bλcT c) = λaλbλc tr(T aT bT c)

=
1

4
λaλbλc tr(

(
δabI + 2iεab` T `

)
T c)

=
1

4
λaλaλc tr(T c) + i

1

2
λaλbλcεab` trT `T c

= i
1

4
λaλbλcεabc = 0,

iv)

trZ4 = tr(λaT aλbT bλcT cλdT d)

= λaλbλcλc tr(T aT bT cT d)

=
1

16
λaλbλcλd tr(

(
δabI + 2iεab` T `

) (
δcdI + 2iεcdm Tm

)
)

=
1

16
λaλbλcλd

(
2δabδcd − 4εab`εcdm trT `Tm

)
=

1

16
λaλbλcλd

(
2δabδcd − 2εab`εcd`

)
=

1

16
λaλbλcλd

(
2δabδcd − 2(δacδbd − δadδbc)

)
=

1

8
λaλaλcλc

=
1

8
(λaλa)2,

v) (
trZ2

)2
=

(
1

2
λaλa

)2

=
1

4
(λaλa)2,

vi)

det(Z) = −1

4
(λaλa) ,

vii)

(det(Z))2 =

(
−1

4
(λaλa)

)2

=
1

16
(λaλa)2 ,
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We conclude that at most two non-zero invariants are linearly inde-
pendent, e.g. trZ2 and (trZ2)2.

The Lagrangian for Σ and Φ reads :

L = tr(∂µΣ∂µΣ) + tr(∂µΦ ∂µΦ)− V (Σ,Φ),

with

V (Σ,Φ) = m2
Σ trΣ2 + λΣ

(
trΣ2

)2
+m2

Φ trΦ2 + λΦ

(
trΦ2

)2
. (2)

b) Arrange the potential such that the vacuum expectation value (vev)
of each scalar field is non-zero. Find the vev by explicitly minimizing
the potential.

Sol. [3P] The potential 2 can be rewritten as

V (Σ,Φ) = λ1

(
trΣ2 − v2

1

2

)2

+ λ2

(
trΦ2 − v2

2

2

)2

.

where λ1 = λΣ, λ2 = λΦ, v1 = mΣ√
λΣ

, and v2 = mΦ√
λΦ

. Rewriting Φ =
φaT a and Σ = ϕaT a,

V (ϕa, φa) =
λ1

4

(
ϕaϕa − v2

1

)2
+
λ2

4

(
φaφa − v2

2

)2
.

Minimizing the potential :

∂V

∂ϕa
= λ1(ϕcϕc − v2

1)ϕa = 0,

implies

ϕcϕc = v2
1,

at the minimum. Similarly for Φ, we get

φcφc = v2
2.

c) How many generators are broken ? Does the answer depend on the
”direction” of the vacuum ?

Sol. [1P] If ϕa ‖ φa there are two broken generators and the SU(2)
symmetry is spontaneously broken to U(1). If the ϕa ∦ φa there are
three broken generators and the SU(2) symmetry is completely bro-
ken.

Page 5 of 25



d) Assume now that the global SU(2) is made local. Construct the ap-
propriate covariant derivatives for Σ and Φ.

Sol. [3P] The derivative of Z transforms as

∂µZ → ∂µ(Z ′) = ∂µ(UZU †) ,

= (∂µU)ZU † + U(∂µZ)U † + UZ(∂µU
†) ,

for an infinitesimal transformation U = I + iαaT a

∂µU = i∂µα
aT a,

∂µU
† = −i∂µαaT a,

∂µZ →(i∂µα
aT a)Z + (I + iαaT a)(∂µZ)(I − iαaT a) + Z(−i∂µαaT a).

Thus

δ∂µZ = i(∂µα
a)[T a, Z] + iαa[T a, ∂µZ].

From here we construct the covariant derivative as follows

DµZ ≡ ∂µZ + ad(Aµ)Z = ∂µZ + [Aµ, Z], (3)

as we require that the covariant derivative to transforms as

DµZ →U(DµZ)U †.

To see this is the case, we recall that the gauge field Aµ transforms as

Aµ → A′µ = UAµU
† + U∂µU

† (4)

and for an infinitesimal transformation

δAµ = iαa[T a, Aµ]− i∂µαaT a

Then, we can check that the covariant derivative 3 transforms to

(DµZ)′ =(∂µU)ZU † + U(∂µZ)U † + UZ(∂µU
†)

+ [UAµU
† + U∂µU

†, UZU †]

=U(∂µZ)U † + [UAµU
†, UZU †]

=U(∂µZ + [Aµ, Z])U †,

=U(DµZ)U †
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Note that the gauge field Aµ takes values in the SU(2) algebra, and
can be expressed in terms of three real fields Aaµ

Aµ ≡ −igAaµT a,

and the covariant derivative can be rewritten as

(DµZ)a = ∂µλ
a + gεabcAbµλ

c,

e) Compute the masses of the gauge bosons on top of the vacua you
found in b). Is it possible to find that all gauge bosons have different
masses ? Explain.

Sol. [4P] The lagrangian for Σ and Φ is now

L = tr(DµΣDµΣ) + tr(DµΦDµΦ)− V (Σ,Φ).

The mass terms for the vector bosons comes from the terms

LM =
g2

2
(εabcAbµλ

c)(εab
′c′Ab

′

µλ
c′) (5)

in the Lagrangian. If ϕa ‖ φa there are two broken generators and the
SU(2) symmetry is spontaneously broken to U(1). In this case we can
choose a unitary gauge in which

ϕa = v1δ
a3

φa = v2δ
a3.

Then the mass term 5 reads as :

LM =
g2

2
(v2

1 + v2
2)(εabcAbµδ

c3)(εab
′c′Ab

′

µ δ
c′3)

=
g2

2
(v2

1 + v2
2)(AbµA

b
µ − A3

µA
3
µ).

In this caseA3 is massless, andA1 andA2 have massesm = g
√
v2

1 + v2
2.

If ϕa ∦ φa there are three broken generators and the SU(2) symmetry
is completely broken. We can choose a unitary gauge in which ϕa =
v1δ

a3 and φa = v2n
a, where na is a unitary vector parametrized by

the angle θ between the directions of ϕa and φa as :
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n1 = sin θ,

n2 = 0,

n3 = cos θ.

Then the mass term 5 reads as :

LM =
g2

2
v2

1(εabcAbµδ
c3)(εab

′c′Ab
′

µ δ
c′3) +

g2

2
v2

2(εabcAbµn
c)(εab

′c′Ab
′

µn
c′)

=
g2

2
v2

1(AbµA
b
µ − A3

µA
3
µ) +

g2

2
v2

2(AbµA
b
µ − (A1

µ sin θ + A3
µ cos θ)2)

=
g2

2

(
(v2

1 + v2
2 cos2 θ)A1

µ
2

+ (v2
1 + v2

2)A2
µ

2
+ v2

2 sin2 θA3
µ

2

− 2v2
2 sin θ cos θA1

µA
3
µ

)
.

The mass of A2
µ is again m = g

√
(v2

1 + v2
2). However, we need to

diagonalize the mass terms for A1 and A3,i.e. :

g2

2
(A1

µ, A
3
µ)

(
v2

1 + v2
2 cos2 θ −v2

2 sin θ cos θ
−v2

2 sin θ cos θ v2
2 sin2 θ

)(
A1
µ

A3
µ

)
,

After computing the eigenvalues, we get that the masses square are

m2
± =

g2

2

(
v2

1 + v2
2 ±

√
2v2

2v
2
1 cos(2θ) + v4

1 + v4
2

)
.

In the case θ = π/2, the three gauge fields have different masses :

m1 = gv1

m2 = g
√

(v2
1 + v2

2)

m3 = gv2.
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Problem 2 (12 points)

Consider a theory invariant under a global SU(N), N > 4 symmetry.
Take X to be a symmetric N × N matrix scalar field that under an SU(N)
transformation behaves as

X → X ′ = UXUT ,

where U ∈ SU(N) and T stands for transpose.

a) Write down the most general, renormalizable, SU(N)- and Lorentz-
invariant Lagrangian for X in four spacetime dimensions.

Sol. [4P] Lets begin by constructing SU(N)-invariants.

X → X ′ = UXUT ,

implies
X∗ → X ′

∗
= U∗X∗U † ,

We notice also that X = XT and X∗ = X†. From here, it is easy to
show that tr[XX†] is invariant :

tr[XX†]→ tr[X ′X ′†] = tr[UXUTU∗X†U †] = tr[XX†] .

Similarly (tr[XX†])2 and tr[XX†XX†] are invariant. No cubic term
in X is invariant since an even power of X is required. Finally no det
is considered as N > 4. The most general Lagrangian is then :

L = tr[(∂µX)(∂µX)†]−m2 tr[XX†]− λ tr[XX†XX†]− γ (tr[XX†])2

b) Assume now that we gauge the SU(N) symmetry. Construct the ap-
propriate covariant derivative for X. If you just “guess” it without a
derivation, you have to show that it indeed transforms as a covariant
derivative.

Sol. [8P] The derivative of X transforms as

∂µX → ∂µ(X ′) = ∂µ(UXUT ) ,

= (∂µU)XUT + U(∂µX)UT + UX(∂µU
T ) ,

for an infinitesimal transformation U = I + iαaT a, where T a are the
generators of the SU(N) Lie algebra and a = 1, . . . , N2 − 1 :

∂µU = i∂µα
aT a,

∂µU
T = i∂µα

aT aT = i∂µα
aT a∗,
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∂µX →(i∂µα
aT a)X + (I + iαaT a)(∂µX)(I + iαaT aT ) +X(i∂µα

aT aT ).

Thus

δ∂µX = i∂µα
aT aX + i∂µα

aXT aT + iαaT a∂µX + iαa∂µXT
aT

= 2i∂µα
a(T aX)S + 2iαa(T a∂µX)S,

where (Y )S = Y+Y T

2
. From here we construct the covariant derivative

as follows

DµX = ∂µX + sym(Aµ)X

= ∂µX + 2(AµX)S

= ∂µX + AµX +XATµ ,

Then, recalling equation 4 we can check that the covariant derivative
transforms to

(DµX)′ = (∂µU)XUT + U(∂µX)UT + UX(∂µU
T )

+ 2
(
(UAµU

† + U∂µU
†)(UXUT )

)
S

= (∂µU)XUT + U(∂µX)UT + UX(∂µU
T )

+ 2
(
UAµXU

T
)
S

+ 2
(
U∂µU

†UXUT
)
S

= U
(
∂µX + 2 (AµX)S

)
UT + (∂µU)XUT + UX(∂µU

T )

− 2
(
UU †∂µUXU

T
)
S

= U
(
∂µX + 2 (AµX)S

)
UT ,

= U (DµX)UT

Note that the gauge field Aµ takes values in the SU(N) algebra, and
can be expressed in terms of N2 − 1 real fields Aaµ

Aµ ≡ −igAaµT a,

and the covariant derivative can be rewritten as

DµX = ∂µX − 2igAaµ (T aX)S

= ∂µX − igAaµ
(
T aX +XT aT

)
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Problem 3 (12 points)

Focus only on the leptonic sector of the Standard Model supplemented
with three right-handed neutrinos.

a) Take the Yukawa couplings to be zero. What are the global symmetries
(apart from the gauged SU(2)× U(1)) ?

Sol. [3P] In the absence of Yukawa couplings, the leptonic sector
consists only of the kinetic terms for the fields, i.e.

LL =i(LL)aγµDµ(LL)a + i(eR)aγµDµ(eR)a + i(νR)aγµ∂µ(νR)a ,

possibly supplemented by a Majorana mass for the right-handed neu-
trinos ; in what follows, let’s assume that this term is absent. Here
a = 1, 2, 3 stands for the generation index and Dµ is the covariant
derivative for the corresponding fermionic field.

From the above we see that the Lagrangian is invariant under

(LL)a −→ (ULL)ab (LL)b

(eR)a −→ (UeR)ab (eR)b

(νR)a −→ (UνR)ab (νR)b ,

where ULL , UeR , UνR ∈ U(3) and independent of each other. Thus, the
global flavor symmetry is

GL = U(3)3 = U(3)LL × U(3)eR × U(3)νR .

b) What are the symmetries once we switch on arbitrary Yukawa cou-
plings ?

Sol. [3P] In the presence of arbitrary Yukawas, there is a global U(1).

(However, and this is very important, when there is a Majorana mass
term, this symmetry is explicitly broken.)

c) What is the symmetry if we assume that the Yukawa couplings are
non-zero diagonal matrices ?

Sol. [3P] For diagonal Yukawas, each generation rotates separately,
meaning that there will be U(1)3.

(As in b), when there is a Majorana mass term, these symmetries are
explicitly broken.)

d) Do your answers for parts a) and b) change if the right-handed neu-
trinos are removed ? Explain.

Sol. [3P] Let us now remove the right-handed neutrinos.
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a) We can see the difference in the kinetic terms of the leptons that
now reads

LL =i(LL)aγµDµ(LL)a + i(eR)aγµDµ(eR)a ,

meaning that the symmetry is now U(3)2.

b) For arbitrary Yukawas, there is now a global U(1)3 symmetry, which
is responsible for the usual lepton flavor number conservation (lepton
number is conserved for every generation).
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Problem 4 (21 points)

Consider the process

e−(p1)e+(p2)→ µ−(p3)µ+(p4) ,

and assume that all fermion masses are zero.
In the Standard Model, at tree-level, this can occur through the exchange

of a photon or Z boson (you can neglect the Higgs boson exchange in the
zero-fermion-mass limit). The interaction of charged leptons with photons is
given by the vertex ieγµ, while their interaction with Z-bosons is given by
ie/(2 sin(2θW ))(gV γµ + gAγµγ5).

a) Starting from the (covariant) kinetic terms of the charged leptons,
show that gV = (1− 4 sin2 θW ) and gA = 1.
Sol. [2P] The electro-weak sector of the Standard Model includes the
term

LEW ⊃ i
∑
j

ψ̄j /Dψj (6)

where ψ ∈ {EL, eR, . . . } with EL =

(
ν
e

)
L

.

The covariant derivative is given by

Dµ = ∂µ − igW a
µT

a
L − ig′

Y

2
Bµ, (7)

with

Bµ = cθWAµ − sθWZµ and W 3
µ = sθWAµ + cθWZµ, (8)

where we defined cθW ≡ cos(θW ) and sθW ≡ sin(θW ).

Therefore,

LEW ⊃ Ēj
Lγ

µ

(
gW 3

µT
3
L + g′

Y

2
Bµ

)
Ej
L + ējRγ

µg′
Y

2
Bµe

j
R. (9)

Using the above expressions for Bµ and W 3
µ we obtain

LEW ⊃

⊃ Zµ

[
Ēj
Lγ

µ

(
gcθWT

3
L − g′sθW

YL
2

)
Ej
L − ē

j
Rγ

µg′sθW
YR
2
ejR

]
+

+ Aµ

[
Ēj
Lγ

µ

(
gsθWT

3
L + g′cθW

YL
2

)
Ej
L + ējRγ

µg′cθW
YR
2
ejR

]
.

(10)
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Using that e = gsθW = g′cθW , T 3
L (eL) = −1/2, YL (eL) = −1 and

YR (eR) = −2, we obtain

LEW ⊃
Zµ

sθW cθW

[
ējLγ

µ e

2
(s2
θW
− c2

θW
)ejL + ējRγ

µes2
θW
ejR

]
+

Aµ
[
−ējLγ

µeejL + ējRγ
µeejR

]
=

=Zµ
2e

s2θW

[
ējγµs2

θW
ej − 1

2
ējLγ

µejL

]
− Aµējeγµej =

=Zµ
e

2s2θW

[
ējγµ

(
4s2
θW
− (1 + γ5)

)
ej
]
− Aµējeγµej =

=− Zµ
e

2s2θW

ēj
[(

1− 4s2
θW

)
γµ + γµγ5

]
ej − Aµējeγµej

(11)

Therefore,
gV = 1− 4s2

θW
and gA = 1. (12)

b)+c) Split the above vertices into vertices that describe interactions of vec-
tor bosons with fermions of definite helicities. Show that the amplitude
e+e− → µ+µ− can be written as

MZ+γ ≡MZ +Mγ =
ie2

s
[ALLv̄(p2)γµωLu(p1)ū(p3)γµωLv(p4)+

+ARLv̄(p2)γµωRu(p1)ū(p3)γµωLv(p4)+

+ALRv̄(p2)γµωLu(p1)ū(p3)γµωRv(p4)+

+ARRv̄(p2)γµωRu(p1)ū(p3)γµωRv(p4) ]

where ωL/R = PL/R = (1 ± γ5)/2 are projectors on different helicity
states and s is the square of the center-of-mass energy. Express the
coefficients Aij through the couplings gA,V .

Calculate all the relevant helicity amplitudes in terms of spinor pro-
ducts.

Sol. [6P]

Define for brevity : v̄2 ≡ v̄(p2), u1 ≡ u(p1), ū3 ≡ ū(p3) and v4 ≡ v(p4).

Then Mγ is given by

Mγ = v̄2 (ieγµ)u1
−iηµν

(p1 + p2)2︸ ︷︷ ︸
=s

ū3 (ieγν) v4

⇔Mγ =
ie2

s
v̄2γ

µu1ū3γµv4.

(13)
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Using the Feynman-t’Hooft gauge for the Z boson propagator inMZ

we obtain

MZ = v̄2

[
ieγµ (gV + gAγ5)

2s2θW

]
u1
−iηµν
s−m2

Z

ū3

[
ieγν (gV + gAγ5)

2s2θW

]
v4

(14)
Or, equivalently,

MZ =
ie2

4s2
2θW

1

s−m2
Z

[ v̄2γ
µγ5u1ū3γµγ5v4g

2
A+

+v̄2γ
µγ5u1ū3γµv4gAgV +

+v̄2γ
µu1ū3γµγ5v4gV gA+

+v̄2γ
µu1ū3γµv4g

2
V ]

(15)

Define for brevity

Mij ≡ v̄2γ
µωiu1ū3γµωjv4, (16)

with i, j ∈ {L,R}.
Using ωL + ωR = 1, we obtain

Mγ =
ie2

s
[MLL +MLR +MRL +MRR] (17)

To obtain MZ , using γ5 = (ωL − ωR), we first calculate the following

v̄2γ
µγ5u1ū3γµγ5v4g

2
A =

= v̄2γ
µ (ωL − ωR)u1ū3γµ (ωL − ωR) v4g

2
A =

= (MLL −MLR −MRL +MRR) g2
A

(18)

v̄2γ
µγ5u1ū3γµv4gAgV = (MLL +MLR −MRL −MRR) gAgV (19)

v̄2γ
µu1ū3γµγ5v4gV gA = (MLL −MLR +MRL −MRR) gV gA (20)

v̄2γ
µu1ū3γµv4g

2
V = (MLL +MLR +MRL +MRR) g2

V (21)

Therefore, for MZ we obtain

MZ =
ie2

s

s

4s2
2θW

(s−m2
Z)

[ (gV + gA)2MLL+

+
(
g2
V − g2

A

)
MLR +

(
g2
V − g2

A

)
MRL + (gV − gA)2MRR ]

(22)

Finally, we obtain

MZ+γ =MZ +Mγ =

=
ie2

s
[ALLMLL + ALRMLR + ARLMRL + ARRMRR]

(23)
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with

ALL = 1 +
s (gV + gA)2

4s2
2θW

(s−m2
Z)
,

ALR = ARL = 1 +
s (g2

V − g2
A)

4s2
2θW

(s−m2
Z)
,

ARR = 1 +
s (gV − gA)2

4s2
2θW

(s−m2
Z)
.

(24)

The photon vertex makes no distinction between fermions with dif-
ferent helicities. However, for the Z boson vertex we obtain that it is
proportional to (gV + gA)ωL + (gV − gA)ωR.

From b) we have :

Mij
Z+γ ≡

ie2

s
AijMij. (25)

d) Calculate the sum of the helicity amplitudes squared. Show that this
sum can be written as∑

hel

|M|2 = X1(1 + cos2 θ) +X2 cos θ

where θ is the µ− production angle relative to the e− direction. Express
X1,2 in terms of Aij.
Sol. [10P] We have∑

hel

|M|2 =
∑

i,j∈{L,R}

|Mij
Z+γ|

2 =
e4

s2

∑
i,j∈{L,R}

A2
ij|Mij|2 (26)

In the following we will denote the helicity opposite to that of i, j by
ī, j̄, respectively. Below we will make use of : ωiγ0 = γ0ωī, {γ5, γµ} = 0,

(γ0)
2

= 1, γ0 (γµ)† γ0 = γµ, (γ5)† = γ5 and ψ̄ = ψ†γ0, among other
identities.

We have

|Mij|2 =MijM†
ij =

= v̄2γ
µωiu1ū3γµωjv4 · v†4ωj (γν)

† γ0u3u
†
1ωi (γ

ν)† γ0v2 =

= v̄2γ
µωiu1ū3γµωjv4 v

†
4ωjγ

0︸ ︷︷ ︸
=v̄4ωī

γνu3 u
†
1ωiγ

0︸ ︷︷ ︸
=ū1ωī

γνv2 =

= tr
[
/p1
ωīγ

ν
/p2
γµωi

]
tr
[
/p3
γµωj/p4

ωj̄γν

]
.

(27)
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Using that /pωī = ωi/p, we obtain

|Mij|2 = tr
[
/p1
γν/p2

γµωi

]
tr
[
/p3
γµωj/p4

γν

]
=

= p1αp2βp3γp4δ·

· tr
[
γαγνγβγµ

1

2
(1±i γ5)

]
tr

[
γγγµ

1

2
(1±j γ5) γδγν

]
=

= p1αp2βp3γp4δ4
(
ηανηβµ − ηαβηνµ + ηαµηνβ ±i iεανβµ

)
·

·
(
ηγµη

δ
ν − ηγδηµν + ηγνη

δ
µ ±j iεγ δµ ν

)
.

(28)

The η is a symmetric tensor, while ε is anti-symmetric, therefore all
“η-ε” contractions vanish. Therefore, we obtain

|Mij|2 = 4p1αp2βp3γp4δ ( ηαδηβγ − ηαβηγδ + ηαγηβδ−
− ηαβηγδ + 4ηαβηγδ − ηαβηγδ+
+ ηαγηβδ − ηαβηγδ + ηαδηβγ − (±)i (±)j εαβµνεδγµν︸ ︷︷ ︸

=−2(ηαδηβγ−ηαγηβδ)

) =

= 8p1αp2βp3γp4δ·

·
[
ηαδηβγ + ηαγηβδ + (±)i (±)j

(
ηαδηβγ − ηαγηβδ

)]
=

= 8
(

(p1 · p4) (p2 · p3) + (p1 · p3) (p2 · p4) +

+ (±)i (±)j [(p1 · p4) (p2 · p3)− (p1 · p3) (p2 · p4)]
)
.

(29)

The Mandelstam variables for me = mµ = 0 are

s = 2p1 · p2 = 2p3 · p4

t = −2p1 · p3 = −2p2 · p4

u = −2p1 · p4 = −2p2 · p3

(30)

We therefore obtain

|MLL|2 = |MRR|2 = 16 (p1 · p4) (p2 · p3) = 4u2

|MLR|2 = |MRL|2 = 16 (p1 · p3) (p2 · p4) = 4t2
(31)

Therefore∑
hel

|M|2 =
4e4

s2

[
u2
(
A2
LL + A2

RR

)
+ t2

(
A2
LR + A2

RL

)]
. (32)

In the following we consider the process from the center of momentum
frame.
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Due to 4-momentum conservation we have : p1 + p2 = p3 + p4.

⇒ E1 = E2 = E3 = E4 ≡ E =

√
s

2
. (33)

We furthermore express t and u through s and θ :

t = −2p1 · p3 = −2 (E1E3 − |~p1||~p3| cos θ) =

= −2E2 (1− cos θ) = −s
2

(1− cos θ)

u = −2p1 · p4 = −2E2 (1− cos (π − θ)) = −s
2

(1 + cos θ)

(34)

Finally, we obtain∑
hel

|M|2 = e4
[
(1 + cos θ)2 (A2

LL + A2
RR

)
+

+ (1− cos θ)2 (A2
LR + A2

RL

)]
= X1 (1 + cos θ)2 +X2 cos θ

(35)

with
X1 = e4

(
A2
LL + A2

RR + A2
LR + A2

RL

)
X2 = 2e4

(
A2
LL + A2

RR − A2
LR − A2

RL

) (36)

e) Since the cross-section for e+e− → µ+µ− is obtained from
∑
|M|2 by

integrating over the scattering angle and since

1∫
−1

d cos θ cos θ = 0,

the scattering cross-section is proportional to X1(s). To study X2(s),
one can define the quantity

A =

1∫
0

d cos θ dσ/d cos θ −
0∫
−1

d cos θ dσ/d cos θ

1∫
0

d cos θ dσ/d cos θ +
0∫
−1

d cos θ dσ/d cos θ

,

which gives the fractional difference in the number of negatively char-
ged muons which are produced in the forward and backward hemis-
pheres, defined w.r.t. the electron direction of motion. Calculate the
above quantity in terms of X1,2.
Sol. [2P] The differential cross section for e−e+ → µ−µ+ reads

dσ

dΩ
=

1

4

∑
hel

|M|2

64π2s
, (37)
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where the
1

4
factor comes from averaging over initial helicities.

The total cross section is given by

σ =

∫
dσ

dΩ
dΩ =

∫ 2π

0

∫ π

0

dσ

dΩ
sin θ dθ dϕ = 2π

∫ 1

−1

dcθ
dσ

dcθ
. (38)

We define

F ≡ 2π

∫ 1

0

dcθ
dσ

dcθ
=

2

44πs

∫ 1

0

dz
(
X1

(
1 + z2

)
+X2z

)
=

=
2

44πs

(
4

3
X1 +

1

2
X2

)
,

B ≡ 2π

∫ 0

−1

dcθ
dσ

dcθ
=

2

44πs

∫ 0

−1

dz
(
X1

(
1 + z2

)
+X2z

)
=

=
2

44πs

(
4

3
X1 −

1

2
X2

)
.

(39)

Therefore

A =
F −B
F +B

=
3

8

X2

X1

. (40)

f) Find A in the small energy limit s� m2
Z and in the Z-resonance limit

s→ m2
Z , where the photon exchange can, effectively, be neglected.

Sol. [1P]

From e) we have :

A =
3sg2A csc2(2θW )

[
2s− 2m2

Z + sg2V csc2(2θW )
]

16(s−m2
Z)

2 + 8g2V s(s−m2
Z) csc

2(2θW ) + (g2V + g2A)
2s2 csc4(2θW )

. (41)

In the limit s� m2
Z , i.e. for

s

m2
Z

� 1, we have

A(s� m2
Z) = −3

8

g2
A

sin2(2θW )

s

m2
Z

+O

([
s

m2
Z

]2
)
< 0. (42)

Whereas in the limit s→ m2
Z we have

A(s→ m2
Z) =

3g2
V g

2
A

(g2
V + g2

A)2
> 0. (43)

Problem 5 (17 points)

Consider the leptonic Yukawa sector of the SM with only two generations
and including the right-handed neutrinos.
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a) Write down the most general, renormalizable mass terms for the lep-
tons that are compatible with the SM symmetries.

Sol. [2P]

The most general mass term comes from the Yukawa-Interaction

−Y (e)
ij Ē

i
LHe

j
R − Y

(ν)
ij Ēi

Liσ2H
∗νjR + h.c.,

which after SSB takes the form

LDirac = −M (e)
ij ē

i
Le

j
R −M

(ν)
ij ν̄

i
Lν

j
R,

where i, j ∈ {1, 2} run over lepton generations, and includes the Ma-
jorana mass term

LMajorana = −1

2
M

(R)
ij νT,iR CνjR.

b) Now take the Dirac mass matrix of the neutrinos to be diagonal and
the electron/muon Dirac mass matrix to have the following form (in
the basis of weak interaction eigenstates)

M (e) = m

(
|a|2 ab∗

a∗b |b|2
)
.

Here, m is a parameter with dimensions of mass, and a, b complex.
In the following, assume that the Dirac masses are the only masses
in the Yukawa sector. Now go to the mass state eigenbasis and find
the flavor mixing matrix V that appears in the interaction between
the mass eigenstates and the gauge fields. Hint : You may use the fact
that the diagonalization preserves the determinant and the trace of a
matrix.

Sol. [5P]

Since M
(ν)
ij is already diagonal, we only have to diagonalize M

(e)
ij . Since

it is hermitean, we only need the unitary matrix Le. Hence the PMNS-
matrix (analog of the CKM-matrix) will be given by

V = Le.

To find Le, we note that the eigenvalues m1,m2 satisfy

m1m2 = detM (e) = 0

m1 +m2 = trM (e) = mr2 ,
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where we defined r ≡
√
|a|2 + |b|2. So the eigenvalues are given by

m1 = 0 , m2 = mr2 ,

and the (normalized) eigenvectors are

~v1 =
1

r

(
b∗

−a∗
)
, ~v2 =

1

r

(
a
b

)
Then, the PMNS-matrix (up to non-physical phases) is

V =

(
cos θe−iχ sin θeiϕ

− sin θe−iϕ cos θeiχ

)
,

where we defined sin θ = |a|/r and cos θ = |b|/r.
c) Reintroduce the most general mass term from part a) and consider an

arbitrary Dirac mass matrix. Without an explicit calculation, argue
how many independent and physical parameters the new matrix V
will have.

Sol. [5P]

When the neutrinos have both a Dirac and a Majorana mass term,
then they are in general Majorana fermions. Therefore, we cannot
use phase re-definitions (of the neutrinos) in order to rotate away
phases in the PMNS-matrix. Hence, we can only use the (left-handed)
electrons/muons to remove 2 phases. So, in general, V will have 1
angle and 3-2=1 phase.

d) Will there be a physical CP-violating phase ?

Sol. [1P] Yes.

e) Finally, consider a situation similar to part b), but with 3 generations
of leptons (again, consider only Dirac masses). The neutrino mass
matrix is also diagonal and the electron-like lepton mass matrix has
the form (in the basis of weak interaction eigenstates)

M (e) = m

|a|2 ab∗ 0
a∗b |b|2 0
0 0 |c|2

 ,

where m is a parameter with dimensions of mass, and a, b, c complex.
How many independent parameters will the matrix V have now ? Will
there be a physical CP-violating phase ? Explain.

Sol. [4P]
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Now the PMNS-matrix is given by

V =

 cos θe−iχ sin θeiϕ 0
− sin θe−iϕ cos θeiχ 0

0 0 1

 ,

so it has 1 angle and 2 phases. However, we can see explicitly that the
phases can be removed by the lepton phase re-definitions by writing

V =

eiϕ 0 0
0 eiχ 0
0 0 1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

e−i(χ+ϕ) 0 0
0 1 0
0 0 1


Hence, there is no CP-violating phase.
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Problem 6 (8 points)

a) Draw the tree-level Feynman diagrams for the following decays

D0 → K−π+,

D0 → K+π−,

with D0 = |cū〉 , K− = |sū〉 , K+ = |s̄u〉 , π+ = |ud̄〉 , π− = |ūd〉. These
are mediated by the W boson.

Sol. [4P]

Figure 1 – Tree-level Feynman diagrams

b) Estimate the ratio of the two decay rates

Γ(D0 → K−π+)

Γ(D0 → K+π−)

Use the following approximation for the CKM matrix

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4),
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with λ = sin θC (θC is the Cabibbo angle).

Sol. [4P]

Γ(D0 → K−π+)

Γ(D0 → K+π−)
=

∣∣∣∣VudVcsVusVcd

∣∣∣∣2
∼
∣∣∣∣(1− λ2/2)2

λ2

∣∣∣∣2
∼
(

1

λ
− λ

2

)4

∼ 380

In PDG R−1 = (3.37± 0.21)× 10−3 ∼ 1/300, page 54 https://pdg.

lbl.gov/2008/listings/s032.pdf and https://pdglive.lbl.gov/

BranchingRatio.action?desig=50&parCode=S032&home=MXXX035

Problem 7 (16 points)

Consider a Higgs theory of a scalar field φ transforming under two dif-
ferent abelian gauge symmetries U(1) and U(1)′ with gauge fields Aµ and
A′µ and gauge couplings g and g′, respectively. Assume that the charges of φ
under the two symmetries are q and q′. Assume that the absolute value of
φ has a non-zero vacuum expectation value 〈|φ|〉 = v. Write down the mass
matrix for the gauge fields.

a) Which combination of the two gauge fields remains massless ?

b) Which combination gets a mass as a result of the Higgs effect ? What
is the value of the mass ?

Sol. [16P]

Let’s first write down the mass matrix for the gauge field. We star
from the lagrangian

L = (Dµφ)∗(Dµφ)− V (φ),

where the covariant derivative is given by

Dµφ = ∂µφ− iqgAµφ− iq′g′A′µφ.
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The mass term for the gauge bosons reads as :

LM = (qgAµ + q′g′A′µ)(qgAµ + q′g′A′
µ
)v2

=
1

2
(Aµ, A

′
µ)M2

(
Aµ

A′µ

)
,

where M2 is the mass matrix

M2 = 2v2

(
q2g2 qq′gg′

qq′gg′ q′2g′2

)
.

Lets diagonalize M2.

detM2 = 0

trM2 = 2v2(q2g2 + q′2g′2) ≡ m2.

As expected one gauge boson remains massless and one gets a mass
m =

√
2(q2g2 + q′2g′2)v. The corresponding (normalized) eigenvectors

are :

1√
q2g2 + q′2g′2

(
q′g′

−qg

)
,

1√
q2g2 + q′2g′2

(
qg
q′g′

)
From here, it follows that the massless combination is

Bµ =
q′g′Aµ − qgA′µ√
q2g2 + q′2g′2

,

while the massive combination is

B′µ =
qgAµ + q′g′A′µ√
q2g2 + q′2g′2

Page 25 of 25


