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Problem 1 Quantum-Classical mapping: XY model

In this problem we consider the 1D quantum XY model, which can be described by the Hamiltonian
Hxy = UZ (nj — ﬁ)Q — tzcos (éjH — é]) . (1)
J J

Here n; = —idp, can be thought of as the conjugate (angular) momentum to the variable
6; € [0,27), with [0;,7;] = i; ;. The corresponding partition function can be defined by taking the
trace in the eigen-basis {|6;)} of 6;:

Z =tr (e’ﬁﬁ”) = /O%Hdej (@le=7"xv|g). (2)

(1.a) Before turning to the quantum case above, consider the classical anisotropic XY model in 2D,
with classical angular variables 6, ; € [0, 27) (indices j and s label the two spatial directions)
and the energy functional

H = —J, Z cos(b;s — 0j415) — Jy Z cos(0js — 0j5+1). (3)
7,8 7,8

Write down the integral expression for the classical partition function Z for this model.

(1.b) Now we return to the quantum problem. Perform a Trotterization of Z in Eq. and

introduce identities o
1= /0 11 44:10)¢0l, (4)
J

to derive a formal path-integral expression for Z, without evaluating any matrix-elements at
this point. Use imaginary time steps 67 = /N (later N — 00) and discrete imaginary times
Ty = SOT.

(1.c) In (1.b) you encounter matrix elements of the form

(O(s1) e 19(r)). (5)

Simplify these matrix elements by using (f|n) = ¢™? and introducing another identity,
LTI ©)
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1If you would like to present your solution(s), feel free to send them to Henning Schlémer until Fri, July O1.
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and using the Poisson summation formula and Villain approximation:
. T 1
; e~ O Hind — N/% ;6_410(0—’_2#1))2 A const X exp [% Cos 9] : (7)

(1.d) From your results in (1.c) show for 7 € Z that

In particular, discuss the Berry-phase contributions to the path integral and why integer
n € Z ensures that Berry phase terms have no effect.

Problem 2 Charge-density wave instability in the 1D Fermi-Hubbard model

In this problem we study charge-density wave instabilities in the 1D spin-1/2 weakly attractive
(g > 0) Fermi gas described by the Hamiltonian

Ho=Ho+ Hin =ty (@jﬂﬁaéj,a + h.c.) — 9> iy (9)
J
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(2.a) Describe the ground state of the system at g = 0, and calculate (n;) = >__(n;,). Assume
half-filling and periodic boundaries.

(2.b) The effect of a weak staggered potential V; = —(—1)’1} is to induce a staggered charge
density (7j5) = (Rjo)ve=0 + (—1)7A;/g. In the interacting model at low temperatures this
charge-density wave order will remain even after the staggered field V{ is removed. Derive
the following mean-field Hamiltonian, by ignoring fluctuations 6&? of the staggered charge

density:
2

. . A2
it = (-(—1)JAjﬁj + j) +O(003). (10)
J

(2.c) Describe how the transformation in (2.b) can be obtained as an exact result using a path-
integral, using the Hubbard-Stratonovich trick. Note that the order parameter is real, not
complex.

(2.d) Calculate the excitation spectrum of the mean-field Hamiltonian in the presence of uniform
staggered order A; = A # 0. Note: You may use analogies with BCS formalism and utilize
the spinor field ¥y, = (Ch.os Chino)’ -

(2.e) Calculate the free energy F'[A] and derive the gap equation for A(T') at finite temperatures
T. Discuss how order can develop spontaneously at low 7" and sketch your result for F[A]
for different temperatures.
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