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Problem 1 Quantum-Classical mapping: XY model

In this problem we consider the 1D quantum XY model, which can be described by the Hamiltonian

ĤXY = U
∑
j

(n̂j − n)2 − t
∑
j

cos
(
θ̂j+1 − θ̂j

)
. (1)

Here n̂i = −i∂θi can be thought of as the conjugate (angular) momentum to the variable

θi ∈ [0, 2π), with [θ̂i, n̂j ] = iδi,j . The corresponding partition function can be defined by taking the

trace in the eigen-basis {|θj〉} of θ̂j:

Z = tr
(
e−βĤXY

)
=

ˆ 2π

0

∏
j

dθj 〈θ|e−βĤXY |θ〉. (2)

(1.a) Before turning to the quantum case above, consider the classical anisotropic XY model in 2D,
with classical angular variables θj,s ∈ [0, 2π) (indices j and s label the two spatial directions)
and the energy functional

H = −Jx
∑
j,s

cos(θj,s − θj+1,s)− Jy
∑
j,s

cos(θj,s − θj,s+1). (3)

Write down the integral expression for the classical partition function ZC for this model.

(1.b) Now we return to the quantum problem. Perform a Trotterization of Z in Eq. (2) and
introduce identities

1 =

ˆ 2π

0

∏
j

dθj|θ〉〈θ|, (4)

to derive a formal path-integral expression for Z, without evaluating any matrix-elements at
this point. Use imaginary time steps δτ = β/N (later N →∞) and discrete imaginary times
τs = sδτ .

(1.c) In (1.b) you encounter matrix elements of the form

〈θ(τs+1)|e−δτĤXY |θ(τs)〉. (5)

Simplify these matrix elements by using 〈θ|n〉 = einθ and introducing another identity,

1 =
∏
j

∑
nj

|n〉〈n|, (6)
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and using the Poisson summation formula and Villain approximation:

∑
n

e−Cn
2+inθ =

√
π

2C

∑
p

e−
1
4C

(θ+2πp)2 ≈ const× exp

[
1

2C
cos θ

]
. (7)

(1.d) From your results in (1.c) show for n ∈ Z that

Z ∝ ZC . (8)

In particular, discuss the Berry-phase contributions to the path integral and why integer
n ∈ Z ensures that Berry phase terms have no effect.

Problem 2 Charge-density wave instability in the 1D Fermi-Hubbard model

In this problem we study charge-density wave instabilities in the 1D spin-1/2 weakly attractive
(g > 0) Fermi gas described by the Hamiltonian

Ĥ = Ĥ0 + Ĥint = −t
∑
j,σ

(
ĉ†j+1,σ ĉj,σ + h.c.

)
− g

∑
j

n̂j,↑n̂j,↓. (9)

(2.a) Describe the ground state of the system at g = 0, and calculate 〈n̂j〉 =
∑

σ〈n̂j,σ〉. Assume
half-filling and periodic boundaries.

(2.b) The effect of a weak staggered potential Vj = −(−1)jV0 is to induce a staggered charge
density 〈n̂j,σ〉 = 〈n̂j,σ〉V0=0 + (−1)j∆j/g. In the interacting model at low temperatures this
charge-density wave order will remain even after the staggered field V0 is removed. Derive
the following mean-field Hamiltonian, by ignoring fluctuations δn̂2

j of the staggered charge
density:

Ĥint →
∑
j

(
−(−1)j∆jn̂j +

∆2
j

g

)
+O(δn̂2

j). (10)

(2.c) Describe how the transformation in (2.b) can be obtained as an exact result using a path-
integral, using the Hubbard-Stratonovich trick. Note that the order parameter is real, not
complex.

(2.d) Calculate the excitation spectrum of the mean-field Hamiltonian in the presence of uniform
staggered order ∆j ≡ ∆ 6= 0. Note: You may use analogies with BCS formalism and utilize

the spinor field Ψ̂k,σ = (ĉk,σ, ĉk+π,σ)T .

(2.e) Calculate the free energy F [∆] and derive the gap equation for ∆(T ) at finite temperatures
T . Discuss how order can develop spontaneously at low T and sketch your result for F [∆]
for different temperatures.
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