FAKULTAT FUR PHYSIK IM SOSE 2022
TMP - TA3: CONDENSED MATTER MANY-BODY-PHYSICS
LUDWIG- AND FIELD THEORY I

MAXIMILIANSH
< NT: PROF. . FABIAN T
LIVI UNIVERSITAT | | DOZE ROF. DR. FABIAN GRUSD )
MUNCHEN UBUNGEN: FELIX PALM, HENNING SCHLOMER

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_22/TMP-TA3/index.html

Sheet 6:
Hand-out: Friday, June 03, 20221-]

Problem 1 Solution of the XY model in a field

In this problem we solve the general XY spin-chain in an external field, described by the Hamiltonian
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Assume periodic boundary conditions, i.e 6}, = 0.

(1.a) Define fermionic operators ¢; by attaching a Jordan-Wigner string FJ to the spin operators.
Show that the Jordan-Wigner string can be written as

FJZH 1<1—2cc,>. (2)

=1
(1.b) Show that the Hamiltonian commutes with the parity operator P= HJ 107,
[H,P]=0. (3)
Express P in terms of the Jordan-Wigner fermions introduced in (1.a).

(1.c) Express the Hamiltonian Hopc assuming open boundary conditions in terms of the new
fermionic operators ¢;, assuming general parameters A and B.

(1.d) Because [H, P] = 0, as shown in (1.b), the Hilbertspace .# can be decomposed into a direct
sum of two subspaces .77, of even (P = +1) and odd (P = —1) parity, & = . & .
Treat these two cases separately and express the spin-spin interactions Hp between sites
j =L and j =1, i.e. across the boundary, in terms of Jordan Wigner fermions.

Hint: In one case you obtain periodic (¢41 = ¢1), in the other case anti-periodic (1 = —¢1)
boundary conditions!

(1.e) Show that the Hamiltonian with periodic boundary conditions, H = Hopc + Hp, can be

written as: L+ P -
H= = HP + —Hper (4)

where H2 (H2) denote the fermionic Hamiltonians with periodic (anti-periodic) boundary
conditions.

Lif you would like to present your solution(s), feel free to send them to Felix Palm until Fri, June 10.
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(1.f) Diagonalize the fermionic Hamiltonians Hy by working in Fourier modes and using a Bogoli-
ubov transformation. Show that its spectrum takes the form

Wi = 2\/(B + cos k)2 + A?sin? k, (5)
and derive which discrete momentum values k,, the fermions may occupy if the obey periodic

(anti-periodic) boundary conditions, respectively.

Problem 2 The Cooper pair wavefunction

In this problem we derive Cooper's expression for the binding energy of a single Cooper pair.
Consider the following Hamiltonian,

H = Z €k éL,Uék,g + Hing (6)
k,o

as discussed in the lecture.

(2.a) Start from a Fermi-sea |F'S) and make Cooper’s ansatz for a state with two more electrons,

(0) = AES)  AT=) on ety (7)
k
Show that (kr is the Fermi momentum):
W)= S o lkp),  with |kp) =L, [FS). (8)
|k|>kp

In the following exercises we will assume that the Fermi energy er = e(kp) = 0.

(2.b) Assume that |T) is an eigenstate of 7, i.e. #|U) = E|T). By comparing components of
this vector equation on both sides, show that

Edp =2, ¢+ ) (kp|Hin|Kp) di (9)

|k/|>kF
(2.c) Simplify the interaction by making Cooper’s seminal ansatz,

—go/V ’&c\, ’ffk" < Wp

10
0 else (10)

Vk,k/ = <kP|7:lint|k;3> = {

Here wp describes a narrow energy shell and V' = L¢ denotes the system’s volume. Using
this simplified interaction, show that Eq. (9) becomes:

¢k=—M > bw (11)

(2.d) From Eq. derive a self-consistency equation for the energy E of the Cooper pair! Take
the continuum limit by replacing - >, — N(0) [ de, where N(0) is the density of
states per spin per unit volume at the Fermi energy, and show that:

wD 1
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wN(O) [ e (12)
(2.e) Solve Eq. for E, by assuming 2wp — E ~ 2wp. Show that:
E = —2wp ¢ TN, (13)
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