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OUTLINE

‣ Review + protoplanetary disc formation: 


‣ Orbital dynamics


‣ Disc structure:


‣ Observations and composition


‣ Gas disc evolution/lifetime:


‣ Viscous evolution + hint of photoevaporation


‣ Dust evolution


‣ Drag, radial drift, and vertical settling
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EMBEDDED SOURCES REVEALED IN INFRARED (NIR AND MIR)



Megeath et al. (2006)Spitzer 4.5, 5.8, +24 m image of Northern Orion Aμ

THE AGE SPREAD IN STAR FORMING REGIONS



• Observations of T Tauri (Class II 
and III) stars show a small age 
spread:


• Compare this to typical 
crossing times and lifetimes:

Δtage ∼ 1−3 Myr

Star Formation must happen fast (i.e. in 
1-2 crossing or freefall times) since the 
global star formation efficiency is low

THE AGE SPREAD IN STAR FORMING REGIONS

tcross =
L
v

∼ 10 Myr

tlife ∼ 10−30 Myr
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WHY DISCS?
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WHY NOT SPHERICAL?



• In a spherically symmetric 
potential, all objects move on 
orbital planes


• Not necessarily in a disc!


• Stars are collisionless and only 
interact through gravity


• Structure at time of formation 
is largely preserved


• Stars randomly thrown 
together (e.g. galaxy 
mergers) create spherical 
clouds  Elliptical galaxies→

ORBITAL DYNAMICS



ORBITAL DYNAMICS



• Effective potential is a combination of gravity and 
angular momentum conservation


• Energy conservation can be violated by dissipative 
forces (e.g. viscous friction) and radiative cooling


• Angular momentum does not dissipate and cannot be 
radiated away (although it can be redistributed)


• Unlike stars, gas molecules are constantly colliding


• Energy loss and relaxation onto circular orbits


• Gas with low angular momentum accumulates at the 
centre of the potential well


• Stars/planets that form in gas disc remain in a disc

ORBITAL DYNAMICS



ORBITAL DYNAMICS
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• Stars accumulate angular 
momentum (spin ~10% of their 
critical breakup)


• Most of the angular momentum 
resides with a smaller fraction of 
the mass in a protostellar disc


• Some is dissipated away through 
magnetic braking


• Very unlikely to form a prestellar 
core without forming a disc


• Exceptions may include: massive 
stars, large magnetic fields, 
binary/multiple systems

DISC FORMATION
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DISK SUBSTRUCTURES AT HIGH ANGULAR RESOLUTION PROJECT (DSHARP)



BASIC PROPERTIES (UNCERTAIN, BUT IMPROVING)
‣ Masses: ~ 10-3–10-1 

‣ Radii: ~ 100 au 


‣ Accretion rates: ~ 10-10–10-7  / yr

‣ Lifetimes: ~ 1—15 Myr

‣ Relevant information for planet formation:


‣ Structure — rotation, density, temperature, and 
chemical composition.


‣ Early evolution and disc lifetimes — strength and 
nature of turbulence.


‣ Dust dynamics — radial drift, vertical settling 
(we’ll discuss growth and fragmentation next time).

M⊙

M⊙
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ACTIVE VS PASSIVE DISCS
‣ Active: most of their luminosity comes from the release of 

gravitational energy as material flows inwards.


‣ Passive: luminosity comes from reprocessed starlight.


‣ Critical Accretion rate can be estimated by assuming the 
disc is flat and intercepts 1/4 of the stellar flux: 
 

‣ Solving for  we find:


‣ Accretion rates are higher for younger objects, so young 
disks are generally active, while older object are 
dominated by reprocessed radiation (passive).

·M

1
4

L* =
GM*

·M
2R*
·M ≈ 3 × 10−8M⊙ yr−1



PASSIVE DISCS: VERTICAL STRUCTURE
‣ Consider hydrostatic equilibrium with pressure gradient:

‣ For   and  :


‣ Where Keplerian angular frequency:

Mdisc ≪ M* z ≪ R

‣ Equation of state for an isothermal disc:

‣ Equation of hydrostatic equilibrium: 

gz =
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d2
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Kz

P = ρc2
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PASSIVE DISCS: VERTICAL STRUCTURE
‣ Often convenient to use vertically averaged quantities, e.g. 

surface density: 
 

‣ Typically assumed to follow:  with 


‣ Minimum Mass Solar Nebula (MMSN): the minimum 
amount of solids necessary to build the solar system


‣ An aspect ratio  gives a mid-plane 
density ( ) of about  at 


‣ If we assume:    then   and 


‣ Flared discs have     (typical values )

Σ ∝ R−p p ∈ [0,1.5]

h ≡ H/R ∼ 0.05
ρ0 10−9 g cm−3 1 au

T ∝ R−q cs ∝ R−q/2 h ∝ R−(q−1)/2

q < 1 q ∈ [0.4,0.8]

Σ = ∫
∞

−∞
ρ(z) dz = 2Hρ0 ∫

∞

−∞
e−x2 dx = 2πHρ0 ⟶ ρ0 =

Σ

2πH



PASSIVE DISCS: RADIAL STRUCTURE
‣ In the radial direction a parcel of gas in the disc feels:


‣ Gravity from the star (non self-gravitating case)


‣ Centrifugal force


‣ Pressure force


‣ Pressure decreases with radius, so gas rotates slightly 
slower than solids at the same radius (sub-Keplerian). 
 
 

‣  so we say the disc is in Keplerian motion, but 
this difference is crucial for understanding dust dynamics.
H/R ≪ vK
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Ultraviolet excess:

High temperature regions 

on the stellar surface due to 
accretion

PASSIVE DISCS: SPECTRAL ENERGY DISTRIBUTION (SED)



‣ Of course we are oversimplifying: discs are not single  
black bodies


‣ Dust in the upper layers absorbs stellar radiation more 
efficiently than it emits IR radiation

T

PASSIVE DISCS: SED

Top down heating from stellar radiation

Bottom up heating from accretion

Active

Passive

Tgas → 104 K



‣ Of course we are oversimplifying: discs are not single  
black bodies


‣ Dust in the upper layers absorbs stellar radiation more 
efficiently than it emits IR radiation

T

PASSIVE DISCS: SED
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COMPOSITION
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Two phases of molecules/volatiles in protoplanetary disks: 
gas (H2 dominated) and ice (H2O dominated)

Observations probe mainly the disk atmosphere: important 
for disk characterisation (T,n,FUV,FXR, ...)

COMPOSITION
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Disk midplane composition will determine the 
ingredients for planetesimals and comets

The relative ratios of dominant volatiles will dictate the 
resulting compositions of planetary atmospheres

Comet-building zone

Planet-building zone

COMPOSITION



Earth’s Water?

COMPOSITION



STRUCTURE AND COMPOSITION



EVOLUTION AND LIFETIME
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STAGES OF EVOLUTION
‣ Class 0 sources are the youngest stage, here the protostar 

rapidly accretes the bulk of its mass (main accretion phase) 
and is surrounded by a massive envelope and a disc.


‣ Class I sources are slowly accreting the rest of the final stellar 
mass (late accretion phase). The young stellar object (YSO) is 
still surrounded by a remnant envelope and massive disc.


‣ Class II sources no longer have an envelope, but still have an 
accretion disc producing the observed excess infrared 
emission. Most T Tauri stars (classical & some weak-line) 
belong to this class.


‣ At the Class III stage finally, the star is basically free from 
circumstellar material, evolving towards the main sequence. 
Most weak-line, but no classical T Tauri stars.



Class I

Class II

Class III

Clump

to


Class 0

• Gravitationally bound core 

• No central object

• Cold sub-mm dust emission

• Formation of central object

• Slightly hotter sub-mm emission 

(due to heating from grav 
collapse)

• Majority of mass in central object

• Central emission moves to 

shorter wavelengths

• Infrared excess due to disc

• Star-disc system fully exposed

• Pre-MS star approaching MS

• Hotter disc emission

• Smaller disc (due to accretion 
and evaporation) with smaller 
infrared excess emission


• Star reaches/reaching MSlittle/no IR excess

FIR/mm

NIR/MIR

−1.5 < αIR < 0

MIR/FIR

αIR > 0

t ∼ 0 yr

∼ 104 yr

∼ 105 yr

∼ 106 yr

∼ 107 yr



If gas can’t initially fall onto the 
star, how does accretion work?



ACCRETION SIGNATURES

Σ = ∫
∞

−∞
ρ(z) dz = 2Hρ0 ∫

∞

−∞
e−x dx = 2πH ⟶ ρ0 =

Σ

2πH



ACCRETION SIGNATURES
‣ Excess emission (veiling) over photosphere is strong 

evidence for accretion: 


‣ Class II (T Tauri) stars have excess continuum emission 
arising from the accretion shock on the star, and emission 
lines from both the magnetosphere and the shock region.

Lacc = GM ·M/R



ACCRETION SIGNATURES
‣ Broad Emission lines ( ) from fast moving 

accretion flows show up as redshifted absorption


‣ Can only be seen at certain disc 
inclinations.

Δv ∼ 250 km/s



ANGULAR MOMENTUM
‣ Accretion requires angular momentum to be lost or 

redistributed in the disc.


‣ Specific angular momentum is approximately that of a 
Keplerian orbit:   .


‣ Increasing function of radius.


‣ Two possibilities:


‣ Viscous dissipation: predominant theory, but still not 
clear as to what causes the viscosity (friction).


‣ Removed via outflows from the star-disc system.

l = R × vK = R2ΩK = GM*R



VISCOUS EVOLUTION
‣ Within any shearing fluid, momentum is transported in 

the cross-stream direction because the random motion of 
molecules leads to collisions between particles that have 
different velocities.


‣ Assume a vertically thin axisymmetric sheet of viscous 
fluid to obtain a simple equation for the time evolution of 
the disk surface density .


‣ Large caveat: the molecular viscosity of the gas is much 
too small to lead to any significant dissipation.


‣ …but remains approximately valid if the “viscosity” is 
reinterpreted as the outcome of a turbulent process.

Σ(R, t)



r̃

t̃ = 1
t̃ = 2

t̃ = 3
t̃ = 4

Σ ∝ R−1

ν ∝ R

VISCOUS EVOLUTION ∂Σ
∂t

=
3
R

∂
∂R [ R

∂
∂R (νΣ R)]



VISCOUS EVOLUTION
‣ Molecular viscosity alone yields timescales ~ 1013 yrs, 

longer than the age of the Universe! Instead, we think there 
is an underlying turbulence that “acts” like an effective 
viscosity.


‣ To avoid specifying the source of the turbulence, we often 
parameterise the viscosity as:    


‣ The largest eddy 


‣ Turbulent velocity   (otherwise a shock would form)


‣ Describes the leading order scaling expected in disks (so 
that the dimensionless Shakura-Sunyaev -parameter varies 
more slowly with temperature, radius, etc. than )

ν = αcsH

≲ H

≲ cs

α
ν



‣ In ideal MHD,  the fluid acts like a perfect conductor and 
field lines are frozen into the fluid (zero diffusion of 
magnetic field lines). In this case, even weak magnetic 
fields will generate a Magnetorotational Instability (MRI).

VISCOUS EVOLUTION



VISCOUS EVOLUTION



VISCOUS EVOLUTION

β =
(plasma pressure)
magnetic pressure

=
nkBT

B2/2μ0



‣ Non-ideal MHD, the disc needs to be sufficiently ionised 
to overcome the effects of resistivity, which otherwise 
allows the field lines to diffuse back through the fluid.


‣ Two processes can ionise the gas in a disc: 

VISCOUS EVOLUTION

‣ Thermal (collisional) 
ionisation: requires 

, only occurs 
in inner 1 au of disc.


‣ Non-thermal (photo-) 
ionisation by UV, X-rays, 
and/or cosmic rays.

T ≳ 1000 K



‣ MRI is likely damped between 0.1–10 au (dead zones)

‣ Important implications for dust dynamics, planetesimal formation, 

planet migration, and episodic accretion

‣ Potentially resurrected by hydro instabilities (e.g. zombie vortices)

‣ Evidence now pointing to influence by magnetised disc winds

VISCOUS EVOLUTION



ZOO OF INSTABILITIES
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Viscous timescale
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DUST: SIZES AND MASSES
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DUST: SIZES AND MASSES



‣ Epstein regime: if particle size  mean free path 
 

‣ Stokes regime: if particle size  mean free path 
 

‣  depends on the particle 
Reynolds number (the ratio of 
inertial forces to viscous forces).

≲

≳

CD

FEpstein = −
4π
3

a2ρgasvthv

FStokes = −
CD

2
πa2ρgasvv

DUST: DRAG LAWS



‣ Force equation: drag, gravity, and pressure forces: 
 
 
 
 
 
 
 
 

‣ The drag coefficient is is related to the Stokes number by:

DUST: RADIAL DRIFT

dvd

dt
= − Aρg(vd − vg) −

GM*

R3
R

dvg

dt
= + Aρd(vd − vg) −

GM*

R3
R −

∇P
ρg

dust velocity

gas velocity

drag coefficient

gas pressuredust density

gas density

A =
vth

ρgraina
⟶ St =

ΩK

Aρg
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AND LIGHT

multi-phase



‣ Now let’s consider the vertical component on its own. To 
simplify things, we’ll ignore the back-reaction of the dust 
onto the gas: 
 

‣ Which is the equation for a damped harmonic oscillator. 
The steady state terminal velocity has a simple relation: 

‣ Importantly,  depends on  which increases towards 
the disc mid-plane. Small grains slowly settle to the mid-
plane. Large grains (if lofted up), will oscillate about the 
disc mid-plane.

tstop ρg

DUST: VERTICAL SETTLING

uz
d = − z ΩKSt = − z tstop

∂uz
d

∂t
= − Aρg(uz

d − uz
g) + zΩ2

K

0



DUST: VERTICAL SETTLING



Gravity

DUST: VERTICAL SETTLING
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DUST: VERTICAL SETTLING



Disc mid-plane

DUST: VERTICAL SETTLING
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‣ In a turbulent disc, turbulent eddies will kick-up dust 
vertically. Eventually, dust will reach a steady state 
defined by the following diffusion equation: 
 
 

‣ Where the diffusion coefficient is defined as: 
(  is the Schmidt Number)Sc ∼ 1 + St

DUST: VERTICAL SETTLING

Dd ≈
αcsH
Sc

∂ρd

∂t
+

∂
∂z

ρdvd − ρgDd
∂
∂z ( ρd

ρg ) = 0



DUST: VERTICAL SETTLING



MAIN POINTS 1
‣ Discs form naturally when gas collapses


‣ Energy is dissipated by friction and radiative cooling


‣ Clouds have a net angular momentum spin axis


‣ Parallel  small      ;     Perpendicular  large 


‣ Discs are thin, but flared due to incident stellar radiation.


‣ Inner disc and disc surfaces are hot (usually ionised). 
Mid-plane is cold and molecules condense out of the 
gas onto dust grains.


‣ Evolutionary stages can be distinguished by their SED.

→ L → L



MAIN POINTS 2
‣ Discs redistribute angular moment through viscous 

dissipation, thereby allowing them to accrete.


‣ Source of turbulence is still not clear, but likely is 
related to magnetic fields.


‣ Gas is pressure supported and rotates at sub-Keplerian 
velocities.


‣ Dust experiences a headwind and drifts radially 
inwards (important for planet formation)


‣ Dust settles vertically, increasing the concentration of dust 
at the mid-plane where planets form.




