
TS.1

[Haegeman2013]  Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.

                           (For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.

[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

MPS and canonical forms (reminder)1.

This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions, 

combined with some arguments from [Vanderstraeten2019, Sec. 3.2]. 

Consider N-site MPS with open boundary conditions:

where is matrix with elements , of dimension                    , with 

Gauge freedom: is unchanged under 'gauge transformation' on bond indices:

group of general complex linear transformation in        dimensionswith 

shorthand: space of tensors with specified dimensions

Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization

or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold

defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge

fixing conditions to remove redundancy due to gauge degrees of freedom.  [Haegeman2011]

space of MPS with
specified dimensions

full Hilbert space
of dimension

tangent space 
of MPS having one
updated tensor

Tangent space: spanned by vectors 
tangent to curves running within a 
smooth geometric structure.

This is a very fundamental and general idea. It is applicable to Hamiltonians with hopping 

or interactions of arbitrary range(!) (which is important for applications to 2D systems, 

treated via 1D snake paths. It has been elaborated in a series of publications:

Tangent Space Methods
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Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: 

Right-canoncial:

Bond-canonical: 

Here             and             are orthonormal basis for subspaces representing left- and right parts of chain.

full Hilbert space
of dimension

space of MPS with
specified dimensions

space of
tensors
of specified
dimensions

Note:          and             are vector spaces, but                 is not, since sum of two MPS with same 

bond dimensions in general is an MPS with larger bond dimensions.                  

         is a differential manifold, since it depends smoothly on the tensors in   

with 

with 

'orbit' of tensors 
specifying same state

and 

and 

1-site-canonical:

2-site-canonical:

Relation between 1-site- and bond-canonical:

Relation between 1-site- and 2-site-canonical:

Gauge can be fixed uniquely by requiring 

Gauge can be fixed uniquely by requiring 
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Hamiltonian matrix elements: 

2-site:

1-site:

bond:

Related by:
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TS.2

Time-dependent Schrödinger equation:

Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions: 

Then 

For a given set of tensors                   , specifying a given MPS                                 , the space of all 

states                          with               , is a vector space  (since                  is linear in     ). It is called 

the 'tangent space',                  ,  associated with the 'base point'                in the manifold 

General solution is (t-dependent) vector in full many-body Hilbert space,           , of dimension  

shorthand: 

Here we have introduced the general notation

Remark: the gauge freedom available for describing                       implies a related gauge freedom 

available for constructing its tangent space. We obtain a unique construction via the following criteria:

(i) We pick a representative         along each gauge orbit   (fix gauge for                )    , e.g. by 

picking one of the canonical forms. 

(ii) Changes of        pointing 'along a gauge orbit' amount to gauge transformations and do not change   

               .   To construct tangent space                 , we consider only     's describing changes of         

with composite index 

Note that  

'gauge orbit' (or 'fiber')

direction along 
gauge orbit 

directions perpendicular 
to gauge orbit, and 
leaving norm unchanged

[Haegeman2014,  Fig. 2]

state has changed by taking out one M tensor

and replacing it by a T tensor

2. Tangent space
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(ii) Changes of        pointing 'along a gauge orbit' amount to gauge transformations and do not change   

               .   To construct tangent space                 , we consider only     's describing changes of         

orthogonal to such directions. 

(iii) Since time evolution is unitary (norm-preserving),                                      , we consider only       's 

describing changes of                producing tangent vectors orthogonal to                      itself. 

We denote the vector space of         's satisfying these conditions by             . 

Then each                       uniquely specifies a corresponding tangent vector                   in                 , 

the subset of tangent space orthogonal to                (w.r.t. scalar product in Hilbert space         ): 

According to (3) and (iii), left-hand side of Schrödinger equation,                         , is in                  . 

However, the right side, , is not. In fact, action of          in general produces MPS with 

larger bond dimensions. Our decision to solve time evolution within                 of specified dimension

thus inevitably involves an approximation. The best we can then do is to project into 

orthogonal tangent space                  , using a projector                          ,  and write Schrödinger eq. as

To implement this idea explicitly, we need explicit construction of the projector 

Remark: Eq. (6) can also be derived using a 'time-dependent variational principle' (TDVP).

Hence time evolution with tangent space methods is also called TDVP in the literature [Haegeman2011].

              contains all states orthogonal to                 and differing from it by only one 

states orthogonal to                
and differing from it by only one 

why do we want only such states?
because the left side also contains
only such states!
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TS.3

General form of tangent vector:

Gauge freedom can be used to bring     -th summand into site-canonical form w.r.t. to site     :

There is still gauge freedom left:                      does not change under the replacement 

Check: extra 
terms yield 

This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on           :

with             an arbitrary matrix of dimensions 

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point vector: 

as required by property (iii)  of Sec. TS.2. Second, it enables construction of an projector onto tangent space:

[Haegeman2016], [Vanderstraeten2019, Sec. 3.2]

Define local 1-site projector: 

If        does not satisfy LGFC, replace it by         which does: 

projector onto orthogonal subspace (see below)

solve for     :

insert back into (3):

Impose condition:

3. Tangent space projector
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as required by property (iii)  of Sec. TS.2. Second, it enables construction of an projector onto tangent space:

Tangent space projector onto orthogonal tangent space                       :

This is our final expression for desired tangent space projector. It is built fully from known tensors!

First term: Unit operator in site representation for site     ; econd term: subtracts components parallel to            .

Define local 1-site projector: 

Satisfies: 

This projects onto the 'orthogonal local space of site    ' (orthogonal to space on outgoing leg of        ):

Acting on an arbitrary state,         produces a tangent state of the form (2), satisfying property (5):

This is indeed a projector: 

Projector can also be expressed as: 
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TS.4

Schrödinger equation, projected onto tangent space,  now takes the form 

Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time: 

Forward sweep, for                                 , starting from 1.

[Haegeman2016, App. B]

In site-canonical form, site     involves two terms linear in          : 

Their contribution can be integrated exactly: replace              by    

In bond-canonical form, site     involves two terms linear in          : 

Their contribution can be integrated exactly: replace              by    

or 

forward time step

backward(!) time step

To successively update entire chains, alternate between site- and bond-canonical form, 

propagating forward or backward in time with           or          , respectively: 

= usual time evolution, minus
   that part of time-evolved state
   orthogonal to initial state

4. Time evolution: 1-site algorithm
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until we reach last site, and MPS described by 

Backward sweep, for                          , starting from 3.

Turn around: 2.

until we reach first site, and MPS described by 

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG), 

that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback, 

a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in 

[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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TS.5(optional)   [Haegeman2016, Sec. V & App. C]

2-site tangent space methods are analogous to 1-site methods, but use a 2-site projector. There is a 

conceptual difference, though: the main reason for using 2-site schemes is that they allow sectors with

new quantum numbers to be introduced if the action of H requires this. However, states with different

ranges of quantum numbers live in different manifolds, hence this procedure "cannot easily be captured in a 

smooth evolution described using a differential equation. However, like most numerical integration schemes, 

the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to 

formulate an analogous two-site algorithm". [Haegeman2016, Sec. V]. In other words: the tangent space

approach is conceptually not as clean for the 2-site as for the 1-site scheme.

As for local 1-site projector, we have

Global projector onto 2-site tangent space: 

We now work with states in 1-site or 2-site canonical form, related by 

We consider tangent space of 2-site (neighbor) variations: 

We need a global projector onto this space. First define a local 2-site projector (compare TS-3.10):

This projects onto the 'orthogonal local space of sites           ' (orthogonal to space on outgoing leg of          ):

5. Time evolution: 2-site algorithm
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Schrödinger equation, projected onto 2-site tangent space,  now takes the form 

In 2-site-canonical form, site     involves two terms linear in              : 

Their contribution can be integrated exactly: replace                 by    

In 1-site-canonical form, site       involves two terms linear in          : 

Their contribution can be integrated exactly: replace              by    

or 

forward time step

backward(!) time step

To successively update entire chains, alternate between 2-site- and 1-site-canonical form, 

propagating forward or backward in time with              or          , respectively (analogously to 1-site scheme). 

A systematic comparison of various MPS-based time evolution schemes has been performed in 

[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

= usual time evolution, minus
   that part of time-evolved state
   orthogonal to initial state

Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time: 
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TS.6[Hubig2018]

When doing MPS computations involving SVD truncations of virtual bonds, 

the results should be computed for several values of the bond dimension,       , 

to check convergence as               . Often it is also necessary to extrapolate the 

results to               ,  e.g. by plotting results versus             or some power thereof. 

However, for some computational schemes, it is not a priori  clear how the observable of interest scales 

with      , nor how it should be extrapolated to              . An example is ground state energy when computed 

using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds. 

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient

scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance, 

(= zero for an exact eigenstate)

with 

Computing                       directly is costly for large systems with long-ranged interactions,

such as 2D systems treated by DMRG snakes. Also, computing          as the difference 

between two potentially large numbers is prone to inaccuracies. [Hubig2018] found

a computation scheme in which the subtraction of such large numbers is avoided a priori.

Then extrapolations can be done by computing quantity of interested for several     ,

but plotting the results via            , and extrapolating to           

If quantity of interest is energy, then extrapolation is linear, 

Key idea: define projectors           onto tangent spaces                   for 'variations of length   '  of           ,

where                  = space of all states differing from                   by       contiguous      's. 

By definition, such projectors satisfy 

completeness in space of MPS

    with specified dimensions

orthogonalitytarget state

(in Sec. TS.3 we defined                               )

Insert completeness into 

definition of variance: 

Now two crucial simplifications occur:

largest contribution to variance cancels by construction!

since 

6. Error estimates
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In practice, use approximation 

(8) is exact if longest-range terms in        are nearest-neighbor, because then 

Construction of projectors   

        is already known from Sec. TS.3.           is straightforward generalization.

When evaluating action of           , adopt 1- or 2-site canonical form [see (TS.1.7-8)]

Define local 1-site projectors [cf. (TS.3.10)]:

For each     , these satisfy:

[cf. (TS.3.11,12)]

These can be used to construct global 1- and 2-site projectors:

or

Using (13,14), the variance                            can be straightforwardly evaluated via contractions.

For remarks on the optimal order of contractions, see [Hubig2018, end of Sec. IV]
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where            and           the 'orthogonal complements'  of        and        , are projector eigenvectors:

By construction, the following normalization and orthogonality conditions hold: 

(whether (11) or (13) is more  
convenient depends on context)

          can be computed either from             , by solving the eigenvector relations (2);

or by using 'fat SVD' (rather than the usual 'thin SVD') when computing       and      : 

is built from the first       columns of the                        unitary matrix         : 

Let be similarly built from its  remaining                                 columns:

fat SVD

Recall that each            was obtained by 'thin' SVD of some           . Let us consider corresponding 'fat' SVD:

Since         is unitary, the columns of        and       form orthonormal bases of mutually orthogonal subspaces: 

The 1-site projectors of (11) can also be expressed as 

(optional)

(      and       are orthogonal isometries)

Alternative construction of 1-site projectors
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