Tangent Space Methods TS.1

Hlwimu
tangent space ""“‘L N /‘? Higtn )
of MPS having one  '¥M3) -

7 updated tensor : P ﬁ A [ [t)\7

/’_‘-\\

full Hilbert space
Wy of dimension d

Tangent space: spanned by vectors
tangent to curves running within a space of MPS with
smooth geometric structure. Mms specified dimensions

Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization

or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold
defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge
fixing conditions to remove redundancy due to gauge degrees of freedom. [Haegeman2011]

This is a very fundamental and general idea. It is applicable to Hamiltonians with hopping _L,L I,HLJ
or interactions of arbitrary range(!) (which is important for applications to 2D systems,
treated via 1D snake paths. It has been elaborated in a series of publications: e T»l

[Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.
(For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions,
combined with some arguments from [Vanderstraeten2019, Sec. 3.2].

1. MPS and canonical forms (reminder)

Consider N-site MPS with open boundary conditions:
6 62 6, me‘ > qu > '1[.2]
M) = 18D Ma My - M IEIRIEIE (1

fwl S

6y . . . (-7, . . . - _
where M[ﬂ is matrix with elements ﬂm ﬁ , of dimension Dl"y 'De ,With Do =Dy = |

shorthand: M = (M n,..., M[ ,J\) c [[\1[ space of tensors with specified dimensions

Gauge freedom: |'l1‘fm]7 is unchanged under 'gauge transformation' on bond indices:

v, My ﬁ« ;'{;j _ 1{4‘ _(f! j,-:'q ﬁ‘u. i‘;-‘ ) 6&1-( ﬁ‘u }1”1

T 111 =2 T1Trrri1i = 7T/ 1 I
€¢ ~ 6¢ bl | 61

Mo = M = Gy Mg o 0§ = G = 4 e)

with ﬁ[(] € SL ( 'Dzl &) group of general complex linear transformation in :Dl dimensions
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space of MPS with

space of

tensors hPs specified dimensions

of speciﬁed

dimensions 'q'm 1% fuII Hilbert space
of dimension d N

'orbit' of tensors I 1}' tﬂ'1>
specifying same state _7 P

Note: |-Hl and ™M are vector spaces, but Mﬁps is not, since sum of two MPS with same
bond dimensions in general is an MPS with larger bond dimensions. AB + H~ E = (f" a )( %)
Mm,gs a differential manifold, since it depends smoothly on the tensors in [M] .

Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: ll{»[MD = ‘;—’;}—’—%—;—’—; with ’{I = { ©)

Gauge can be fixed uniquely by requiing AL AT - ¢ and A¢ gt = A(a&mﬁf ¥ Hm

Right-canoncial: | %yl = -?—4—/%—&?—4—’?—1_—; with _&r A = 3 ()

—_

Gauge can be fixed uniquely by requiring B‘&: = f and et ¢ Re = A(a&mal ¢ Bm

AN
Bond-canonical: (M) = ‘?"4“‘%’7’@*?“‘?‘ = l[6>¢“\0<> /\w]

Se Oeat
_—

Here Io()é’ \ and (F)‘i are orthonormal basis for subspaces representing left- and right parts of chain.
- {

1-site-canonical: |y (¥}’ A ? i— % (2

, NN - e
1 F ‘ F71+| [ﬁ)\&)ﬁn‘cmf
—_— 6 — G’j
I, |75
A A F © B
-site- ical: v > > ¢ € *Bpe,
site-canonical: 1M1 o pf ‘pzn“u)“)‘“) Fie w?fr’
T Sedes _"—' ,
[y, s p?m (s)

Relation between 1-site- and bond-canonical: Cffl = A[q /\m = /\ @

(e-1\ %m
Relation between 1-site- and 2-site-canonical: F“'“.,] = C te} %i!u] = Ay C(M‘ (o)
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Hamiltonian matrix elements:

2-site: % Gy bgu B
QLR MR h ey ——— FC“Fﬁ Hie g1
R 1 i_(_ﬁ_a_‘ ‘t. 0, F‘—&—)i L(_ .J ("

« h
1-site:
p e *ﬁ—r‘—r
R a $
<ol<ofl ol Al (g1l = . = Heg
e Les e £ L-1 i—b‘—‘— +
(iz)
bond: « B
L IR J & N = I i ‘ =
L mﬂ“‘“)& | WU U S e S "t “
«' p
Related by: Arer
]
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L
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Ale- Al
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S0 B o iese] = Mg 80
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TS.2

2. Tangent space

Time-dependent Schrodinger equation: iiﬁ% (u({) 5y = [:i I’M()) 0}

N
General solution is (t-dependent) vector in full many-body Hilbert space, (Hl , of dimension o{ .

Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions:

—_—

[yinE))) = ‘l"m(ul \ f:‘m&)\ | Mf,i](’cl - Mﬂpﬁ o
- d Ay ;"m Mo Mow)

D e e e e = [BLHy ¢

L= Mu)

Here we have introduced the general notation state has changed by taking out one M tensor
\j{d replacing it by a T tensor

IU .
‘@[T]> Ma ﬂfg-;] —r[ﬂ Atera M‘fn] =: ‘)l lP[M.D T W

\l_’llll\l

shorthand: T_:: (‘{tl/ /T[Al\) e M

Then & [%[ua)))
At

with composite index j= (4 2,6 ‘5)

For a given set of tensors M & IMI , specifying a given MPS \'l(a[rlD G\Mﬁ% , the space of all

states | §[T]>ﬂ with T &M , is a vector space (since l@{T\> is linear in T ). It is called
the 'tangent space’, "'[["'L associated with the 'base point' Iq»(M)) in the manifold MﬁPS .

(gl
Notethat T’ < Mu, =« H.

directions perpendicular I
to gauge orbit, and N TM & ["15
leaving norm unchanged //—\ T L
m Ry
M ¢ 5

tdirection along
gauge orbit \ ( ")>

'gauge orbit' (or 'fiber") / /

[Haegeman2014, Fig. 2] /Vl Mps

Remark: the gauge freedom available for describing ll[’fM1> implies a related gauge freedom

available for constructing its tangent space. We obtain a unique construction via the following criteria:

(i) We pick a representative M along each gauge orbit (fix gauge for|’q»[M}) ) ,e.g.by

picking one of the canonical forms.

(i) Changes of ™M pointing 'along a gauge orbit' amount to gauge transformations and do not change

]q,{m]) . To construct tangent space T;* wmS we consider only Trs describing changes of M
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— . . .
lq,[m]j . To construct tangent space || ) we consider only T's describing changes of M
orthogonal to such directions.

(iii) Since time evolution is unitary (norm-preserving), {3{1) \'1(,(4[) S = (| ,weconsideronly T 's
describing changes of M producing tangent vectors orthogonal to | Y[M ]7 itself.

iR
We denote the vector space of | 's satisfying these conditions by ’—ﬂ_,; .

Then each T & "]‘(‘;1‘\‘ uniquely specifies a corresponding tangent vector \&[T])M in Tl;(\:tnl) ,
the subset of tangent space orthogonal to N,(m) (w.r.t. scalar product in Hilbert space {| ):

BMu\Bla)) = o ¢ TeTy )

A
FW.IMM) contains all states orthogonal to ‘Q[fﬂ? and differing from it by only one M

L
According to (3) and (iii), left-hand side of Schrodinger equation, i \1{/[&)) ,isin T .
. o lyinyy
However, the right side,  }| ‘19({)7 , is not. In fact, action of H  in general produces MPS with
larger bond dimensions. Our decision to solve time evolution within "/V(nps of specified dimension
thus inevitably involves an approximation. The best we can then do is to project H ‘1(,({)7 into

N
A
orthogonal tangent space ' 1I'| , using a projector L , and write Schrdédinger eq. as
g gent sp ey + USINg @ proj ?le[M(HD ger eq

A
- d ( _ . 0 _ N
14 (YInw ) = | B = P U | (# ©
& 2= GIRAY s Pk gy W LD )
L TEERITONE,
| /\ ﬂ tates orthogonal to | @[#))
hﬁMﬁ b — Z:dejifcf)erir?g cf)rrz)?n ic’; by only one
s P \’-\\ % im @n) why do we want only such states?
because the left side also contains
H only such states!

s Wtnen
\;7 7

-~

M Mps

To implement this idea explicitly, we need explicit construction of the projector "[\D ’

Remark: Eq. (6) can also be derived using a 'time-dependent variational principle' (TDVP).
Hence time evolution with tangent space methods is also called TDVP in the literature [Haegeman2011].

Page 5



3. Tangent space projector [Haegeman2016], [Vanderstraeten2019, Sec. 3.2] TS.3

General form of tangent vector: 5' M “tc-tl 1?21 Mt Mm\ )
gy T T 1 T T T 1

Gauge freedom can be used to bring £ -th summand into site-canonical form w.r.t. to site ¢ :

N
- A Ty 8 B
T = > Aa A1 ey Biag )
0T, = T T 1T 1 17 7T @

There is still gauge freedom left: | E[T‘l )M does not change under the replacement

with Y[ﬂ an arbitrary matrix of dimensions De*Dz

Check: extra i An l‘\tc-ll \frl-n‘&m B (4 B () 0
terms yield g T 7 1 v 1 (T +TrTt T )
L= 0
NZ, A Afe-1y Ay Y[el B (e Bf‘“], ) =0 - ! )
o r 1 1 3 { [ f ®
This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on Tie] :
AN
A TS =6 wt- N b = o ©
fele lig = = .., N-l .
~ at
If T does not satisfy LGFC, replace it by T~ which does:
I dition: = T A A < A, Y0
mossandion 0= Roines A (T o980 - A Tin 7
1 ¢ F
solve for | : Y[Q = A [e};( Tieg + YV—‘S Gfﬂ» @
~& (l _ A‘" t ( ¢ c )
insert back into (3): Trey = [e7 Hm;) T[e[ + \(((4] qul (#l
—_——

projector onto orthogonal subspace (see below)

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point vector:
N A . R A ~ 1—[8'3’ B i B
Cd ‘\ Cd Ld -~
b o o

) s
-

- ,q’r" A’O ‘n*\A"

n

<pimdfITD),

as required by property (iii) of Sec. TS.2. Second, it enables construction of an projector onto tangent space:

Define local 1-site projector: 16 2 & Af
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2

Define local 1-site projector: o '3 ¢ 4
o K" AR ¥ ) : { ) (o)
Pm ¢ 1 xg ﬁlm Eﬂmia o ,-l.- d‘3¢| ~n’:%2
Satisfies:
1 - ( = - -
F\((la('o’?{“ A ﬂ/‘, (Iloa) l - 2 = -Ate =e
at
o
Pl (1-4,4*)»4 =R -0=0
(el‘(o- ‘——:—Z’a (‘“’)

This projects onto the 'orthogonal local space of site f ' (orthogonal to space on outgoing leg of 4[(] ):

(10) ®5)
p-P = P(L-AR) = P i )

i
Tangent space projector onto orthogonal tangent space u |

L3P
1 4
¥

(13)

J__u.@] (ll) "~

(%)
T_‘1_‘1_"]

>

Acting on an arbitrary state, p produces a tangent state of the form (2), satisfying property (5):
W n n Mo oMW

‘lk 1 J\

BiE exil B =

Bre

>

Aa Ay T B B
Y ¥V T 7V 717 °1

Projector can also be expressed as:

4
13 e YL e 8" 18¥ (e A A L T L
T A - (fey
1yl
) g TR A (W (e 18 1A #1a T (€ Je

This is our final expression for desired tangent space projector. It is built fully from known tensors!

First term: Unit operator in site representation for site f ; econd term: subtracts components parallel to IW[M]) .
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TS.4

4. Time evolution: 1-site algorithm [Haegeman2016, App. B]

Schrédinger equation, projected onto tangent space, now takes the form

d (y[mee = 3|BLM P
2 Y(rmee)]) &L 1) - Tivencorrs
ﬂ A Crel & (5 ﬂ A A A g (5

~ __4_/ [u,_*/
Z 0 I = 2
£ 14

H 1 [mce)) "

o ;Z an had 6

@)

L (e Alel

= usual time evolution, minus = Z % km
i v , 2 H
that part of time-evolved state

orthogonal to initial state \ L (L )
®

Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time

lC[ﬂ(H = H[d ("C]('k) (4)

In site-canonical form, site { involves two terms linear in C(ﬂ :

Cqt+)= e"”fﬂrqﬂu)(

Their contribution can be integrated exactly: replace Cm({) by
forward time step 5)

A = =Ky Al

In bond-canonical form, site { involves two terms linear in A €} :

Their contribution can be integrated exactly: replace /\m({) by /\[el (t-1)= e K[(’]T A[ﬂ ()

backward(!) time step ('1)
To successively update entire chains, alternate between site- and bond-canonical form,
propagating forward or backward in time with Hm or K[e} , respectively: ()
Craly=
1. Forward sweep, for /| = (..., N-1 ,starting from Bm({\%m[{) &[‘,3(0 .
A _"_‘ | B B
Crr (8 B8 ¢ L o
“[( A C
T Colees) B Tl e
— A A A
Am({:fz\ /\m(’u—-r. ) Blesnld) ] I = 1‘3 1?
Km
~ Aa A #F5
10¢) a(l](ht . m(’c) &[un(%) ) | 1A B 5
LI b 1 ]

[7A



@ Alted Z\m(’c) Rienl3) T A 8 5
SRR . :
(d)
A A
_ Es
S RO R B e W S
until we reach last site, and MPS described by A[‘\(j‘ ) .. ﬂ[u,d (1+7) C{u] (£) (1)
o) t+1{ A A A
2. Turn around: w) . \ j C
4 \ ‘ V- N
H fw) A A A C
o Cmltr7) \ | ]
H[lo] taep =
B (g l420) h& ﬂ{ T My
t
N-t N
3. Backward sweep, for { = A)—:, Sy starting from A(,\({— +T) -- ﬂlu ](’u'(.) C{u} 4:*21) W)
taer C b
'q[t](['f'c)cuﬂl{frﬂ) {'+T1 A A \ \ 1
¢ \ Ll i Lee
) A B 8
= A+ Ay (t+21) B o A
3(a) [ fer)(t+21) \ l
Ky . B 3
@ Ak Ay (1) Beaqlbs22) A AN rﬁ
3(¢) \ \

B B
= Ciey (kr1) Bies] [Evte) ‘{ % { ‘ ]
H teep < 5 5
_3%, Cm(’c»fn) Bresil (£427) {.”1 j\_g )

t
L L4

until we reach first site, and MPS described by Cm({-{- 2t ) 5[21 (fﬂ"z.)_. . &[‘,3 (¢ *2T) ()

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG),
that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback,
a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!



5. Time evolution: 2-site algorithm (optional) [Haegeman2016, Sec. V & App. C] TS.5

2-site tangent space methods are analogous to 1-site methods, but use a 2-site projector. There is a
conceptual difference, though: the main reason for using 2-site schemes is that they allow sectors with

new quantum numbers to be introduced if the action of H requires this. However, states with different
ranges of quantum numbers live in different manifolds, hence this procedure "cannot easily be captured in a
smooth evolution described using a differential equation. However, like most numerical integration schemes,
the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to
formulate an analogous two-site algorithm". [Haegeman2016, Sec. V]. In other words: the tangent space
approach is conceptually not as clean for the 2-site as for the 1-site scheme.

We now work with states in 1-site or 2-site canonical form, related by

R A Cc ©& B A A F ©- B
[M - > > & £ = > 5 v &
LaCP A SR I - | S B2 N S 0
6 6"'6(“
F(l,w] = C (e} Etﬂﬂ) = Am C(eu] ()
We consider tangent space of 2-site (neighbor) variations:
N
- A R Tiee] By By Z, 4

=1

We need a global projector onto this space. First define a local 2-site projector (compare TS-3.10):

f
Lol 7! 265" (‘ °,l”I ‘. 6! o '} A ( )
:P‘l} “0@? = 1 KO’E - [e] ak‘ ‘e ﬂ. P d( = 3’, - Q f 0
6-/ a..l
As for local 1-site projector, we have ﬂ{- f =0 £A4 = o P-P =P (s)

/

This projects onto the 'orthogonal local space of sites ( , (H ' (orthogonal to space on outgoing leg of Ffl,(n} ):

Global projector onto 2-site tangent space:

y f}r 2 4 "
~ ﬂ*
PT+ = Z 2 A P[(’,!fl] Q)
e (m) =3 s o
A X X
£ 4 4w
Ny e AR T P VL U
- Z ‘ B Z 41 (A l) g e e )
f=1 1 e Q(s:w L= "TF [F [ [a [ 1€ Te
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Schrédinger equation, projected onto 2-site tangent space, now takes the form

v d [¥lme)]) = Pran H 1y [mce))
L3¢ U ivcmeeyy
) y P A P g B A A fyCen ® B
. 7,‘4( 0 N-/ { | V= [
> A A Fuwd & _ 7 —5 -5\ —L ,
S B B | B I L=1 | 1] |
: YIS eSS
o W AN 1 T 7 1 1
L7 AAACmB b ®)
fe VT T T T N Freus) Ceeery

N-/
= usual time evolution, minus = z Hie el z H (¢4
that part of time-evolved state L= ’ L=
orthogonal to initial state W — — I { )

Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time:

In 2-site-canonical form, site £ involves two terms linear in F[gtu.] : iF[CIM (t) = H[e,u-] F[(,c *'1(%) (i)

Their contribution can be integrated exactly: replace Fu‘y,] (+) by Fl'l o] 4+7)= e ¢ H[(,CH]I Fp,m]({)
! (ol

forward time step

In 1-site-canonical form, site k1 involves two terms linear in C(C*l\ bt (Y) = -H",,]C fes) ®

Their contribution can be integrated exactly: replace Cm({) by C [el({--t) = e"- H[Mncl'w} {{ ) (‘5)
backward(!) time step

To successively update entire chains, alternate between 2-site- and 1-site-canonical form,

propagating forward or backward in time with H(f ) or H[e] , respectively (analogously to 1-site scheme).
4

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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6. Error estimates [Hubig2018] TS.6

When doing MPS computations involving SVD truncations of virtual bonds,

the results should be computed for several values of the bond dimension, D ,

to check convergence as D — © . Often it is also necessary to extrapolate the
resultsto D = @ , e.g. by plotting results versus /1)  or some power thereof.

]
/D
However, for some computational schemes, it is not a priori clear how the observable of interest scales

with D , nor how it should be extrapolated to D=w an example is ground state energy when computed
using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient
scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

E
. 2
U= <yl (I-I - é) (4> (= zero for an exact eigenstate) (1) §

= (q“fl’-[tp) - El, with E = {gp|H gD @) f\«E;‘“t

Then extrapolations can be done by computing quantity of interested for several ., © U

but plotting the results via U , and extrapolating to U —o

cncf
If quantity of interest is energy, then extrapolation is linear, —5 ( U) + au ®

A

Computing <\H ):\l lf l}) directly is costly for large systems with long-ranged interactions, | | ! i
such as 2D systems treated by DMRG snakes. Also, computing 5  as the difference |ﬁ | |l|
between two potentially large numbers is prone to inaccuracies. [Hubig2018] found !._'._.l j_i
a computation scheme in which the subtraction of such large numbers is avoided a priori. '*I"J s

A

Key idea: define projectors P:. onto tangent spaces 'Ir

‘ oy
where ’IT;;("» = space of all states differing from [q,(ﬁ ) by 2 contiguous M 's.

for 'variations of length ;' of 1%% ,

_ , ! i
(in Sec. TS.3 we defined TI‘P("')) = Tm(»m )

By definition, such projectors satisfy

N .
A Lol A
P = lyXyl L (v PR = 5‘] P.oww 1 = Zl- P, o
) =06
target state orthogonality completeness in space of MPS
with specified dimensions
. N
Insert completeness into (lzc) AL N
E - -
definition of variance: ¥ I(H 3 lZ:OPi.(” £>) 4y =: Z Ui )
t=o
Now two crucial simplifications occur:
v, = Lyl(H=-ENI(d-€Y) 14y = (E-€ME-6) = o f6)
——
(ya) largest contribution to variance cancels by construction!

e = Ll(H-ENP(G-Ey) 1y = Cald QRHlY  snce Pl o

1

U
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In practice, use approximation U = U + U, =|L{g|HRH W) ¢ Ly (4?2 Hlyy| @

a
H I A

(8) is exact if longest-range terms in are nearest-neighbor, because then j)i 53 H 4) = © @

Construction of projectors

P A

f. is already known from Sec. TS.3. ﬂ is straightforward generalization.

When evaluating action of + , adopt 1- or 2-site canonical form [see (TS.1.7-8)]

. R A Cc & B A A F © B
LOONE AR B TS S SR S e o s (12
S S804
Define local 1-site projectors [cf. (TS.3.10)]:
3
f
o'g! o K6’ ot L3 o « « L
Pm g g @1 z ) v of H': ,(‘B{I ~ K,?‘x (v a)
¢ .
d ¢
{7
. [ - ) J“ B ]g
e L Ay g [ [0 B
Qo e o SRl < l;‘ i
For each f,these satisfy: q+F = 4F A = v, pz = P (ta)
[cf. (TS.3.11,12)] + ’
B& = Q% =o, R Y (2h)
44 4t
ft Brent B
. R } &“)chu] B )
PN 17
£
. ‘ w1 (e 1 e T A A Al Ll
L= {18 14 |4 @1 (5 [ {F [ ]a "8 (€ Te
1 1 1 L1 L1y N B B
&" B‘guz] ) _ LI |)||{| T 1 B I)l%i I
] -
B z B [ W Y SO T I U | _ P W W Y [
[&!1/ +T|||j%llf l||I|II

Using (13,14), the variance U g) Vi + U, can be straightforwardly evaluated via contractions.
For remarks on the optimal order of contractions, see [Hubig2018, end of Sec. 1V]
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Alternative construction of 1-site projectors (optional)
(whether (11) or (13) is more

The 1-site projectors of (11) can also be expressed as convenient depends on context)
6 gt 'fo'
‘6! Lolp! +~ o - e
P 4 . Hl o 6 = of Eqo F _ £
(L L D L Oy, F " 8 f"f*‘ Bup Fyer
. 4 §!
where A‘ and BlT the 'orthogonal complements' of A and & , are projector eigenvectors:
<! 17 'o«a '7' . == sla! » <<
- - By °F Q-7 = gy €8 =
By construction, the following normalization and orthogonality conditions hold:
At -, ale-og gt =1, get-1 o
] "‘ + 4
ﬂ4ﬁ = O/ A Al.-.—o 313 '—'OI BB-}'—“O. (9]

] ]
A , & can be computed either from A, % , by solving the eigenvector relations (2);
or by using 'fat SVD' (rather than the usual 'thin SVD') when computing H and B :

Recall that each ﬂfe] was obtained by 'thin' SVD of some H:;] . Let us consider corresponding 'fat' SVD:

i ©)

M _fatswo  ,  OF
3 o4 D

f
'D—'—'D = D J

1
<

o
> v od D
S
DA = 7 ﬂ“\ a'e )( ‘ o \( )
D td-D D D4-D
? R
! l'-—r—
H€ is built from the first D columns of the D'd x D d unitary matrix MG : LI > @
e
Let A"® be similarly built from its remaining D = Dd ~D  columns: n"—rd_b” ®

Since [,( is unitary, the columns of (| and AI form orthonormal bases of mutually orthogonal subspaces:
(A and A' are orthogonal isometries)

D
4,6 40l at 1 |
uu= £ q;‘j\ﬂ‘lﬂ's i Hﬂ . )
664-“«,— ',ll ﬂf: ﬂ/r= ﬂg",,jn F): A% = o , ﬁ;_+ a¢ - 5 (o0
A A A A
-0, -0, =, CE-eow
qat A'+ H+ ﬁ'f
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