DMRG-I: Ground State Search

[Schollwéck2011, Sec. 6.3]

DMRG-I.1

* The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken
Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit IJ — o

[Ostlund1995]

» Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

» Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]

« Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

: Ostlund & Rommer

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Hence extremize

Graphical representation, assuming mixed-canonical form w.r.t. site ¢
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Qa o' . [
In the notation of (MPSV3.11): %, Agy = A Ay with  a'=(ol6/p) g

This is an eigenvalue equation for Qm and can be solved with standard linear algebra tools,

e.g. Lanczos algorithm (next section).

More generally: if ) isnot represented in mixed-canonical form, one obtains a generalized ( b)
eigenvalue equation of the form H A = WA ,with N defined by r.h.s. of (5) .

Use that 'eigenvector’ ﬂ[a yielding lowest eigenvalue (= current estimate of ground state energy) to
'update' MPS, then move to next site, switch to mixed-canonical form of site Aot ,
optimize ﬂ(,(+,] , etc..

updated
T [ ¢ T I T 1
A NI~
< ;
_ >

'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.
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2. Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG-I.2
original idea stable version nice discussion

« Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H

« Prerequiste: an algorithm for computing || [y , for any vector [y

We seek the extremal value of E {\1(»& = L[ H (%) 0)
{w [ w)
Denote extremal value by 63 = wmin E[h{)\ = B Hl\'iﬁl (€3

The direction of steepest ascent of the functional & [(’Lﬂ] , evaluated at I—\p7 , is given by

'functional gradient”: %E_[N}} = m - M \'q/> (3
$ <y {w\y) SV DI
_ H -] 45 = | )
ety )

Moving in opposite direction will thus lower the energy:

E [ 4y -~ « \UM) k < E H'L(').S for small, positive &£ (s)

To find optimal value for o/, minimize E {\'Lﬂ = ot \’U(GDS w.r.t. the 'variational parameter' o ,
in the space K( = §{)m~i \"{'7 , (1&,,\5 S = S()«M %(1('7/ H (’Z['7 Z (A

Starting from the random initial state M.D , construct a normalized basis {I Vo), Iv.)} for this space:

14
[y’ @

Second basis vector: = b ) = \1},’) = R ) = (U {ulH vy) @)

—
normalization factor, orthonormalize = ag

such that (v, (v 5 = | w.rt to (19

— < s \(®) since <v',)v°')(:)o
Ll L= J{UI‘UI) = (U‘(\H‘U‘b7 + % @

real

First basis vector: v, =

Now find a matrix representation of H in this space: define

o = Ly dH ) 4= ol b = )

I

then )
I'H'Utb = "UJ L| + ['\537 QAo D]

hence in the space K, , the Hamiltonian has the matrix representation

Page 3



<Us[ H ”'-yb} <U¢>‘ HI‘L) ao b))
HK[ = = (lZ)
IS ALY ([ B (uD by @&

The ground state of Hk‘ , say l S 7!( , yields the optimal choice for o¢
]

Now we could iterate: use 13 7K| as starting point for another optimization step. Convergence is

rapid. Monitor quality of result by computing the residual energy variance,
2
i) = (H =&l - = GBI - Zyldluy (@

and stop when it drops below some threshold.

Krylov space

After L, steps, starting from (15‘07 , the resulting vector will live in

K, ( lsoy) S()@A{ lusy, ff (Uo7, H (ve) , ... , HE ot

=  'Krylov space of H over U, (dimension L +1 ). s

"

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K L. ,then compute its

ground state. (This is faster, since it amounts to using (. simultaneous variational parameters

instead of L. separate ones.) To do this, iteratively construct a 'Krylov basis' for KL,

Krylov basis — § (v, [U)), ... ‘UD}

As before: L:u. \150 = |3'(7 = [ ([ve Y —= ao fu,) (16
normaIizei
Third vector: &;L\-m) = |G;,> = H Z \U‘) CU\\'\lUD (1)
\1=°
=) - tsda = (U b W
) - <,_5||H|b.\) m
where by = [{RIGY = <ZuolWlu) (tq)

real

Note: (Uz,‘ H (Uo§ = D , since H |u‘,,> & Seu«.i ‘UQ/ \v()z (20

Fourth vector: \>3le3§ = 15D H (o) - Z \xr §(u| Hivy )

J-O
= H lzﬂ - \0‘17 a ~(U‘)L - |u°> 6 2

(20) ¥/

,—-_Jb——-ﬁ —_———, A
CRLICA <J‘\Hl15,_3 vty
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Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step: “)“H \'Um.> = (f‘j:m) = H\'U‘.,\) - Z. \U:}><U\\I 1w (u3)
J=°

= H‘Uq) - \‘U\? fa —~ Vu- Y Lw (26

with Q. = <1)‘th I'U',,\> LV\ = <U0\\ H’ l Uﬂ—-l> LZX)

[If it happens that ‘3“*‘ = o , pick an arbitrary | Uy, orthonormal to all |v:i§’ j =0 .. u ]

Throughout we have: <U'M‘|'{(‘D‘j7 = o for J =09 .. w2 (268
since (@
H \U‘J-7 & span i 6$+‘>/ \U:l7' Lo 9 ] (23}

Hence, rearranging (24):

Hwy = v, bk,

ooy ay ¢ W) by, @8

Hence, in KL , ( Qo Q, )
H has tridiagonal form: HKL ) by &, b,
by &, (°3
by« ‘
Q- be
b

\ /

Ground state of HK satisfies the eigenvalue equation (H K ); ‘ (L[,SL) J = Efls- (L"; )i
L Y
L .
{v, )4
%v 57 (‘[’3 )

are the best approximations, within the Krylov space K L of true ground state energy and ground state.

Eg and N/é‘? =

Thus

Note: N,é‘) can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from U3 ,

[}
The Lanczos scheme converges exponentially fast, with a rate ~ [gap to first excited state]/ C
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Summary

1. Start with arbitrary fuo?

2. First iteration step: (i) l§> = Hilwy
(i) 0 = (GIU)
Giy 167) = ) - aotud

3. General iteration step, for W>

o b, = GIED
(i) I ba o ,then [(vad = |GI)/b.

else, pick \U‘D as arbitrary normalized vector orthogonal to all \\ID, e fowa)

@ 15,7 = H)

(iv) G = <§v\ﬂ \Uu>
(V) ['i}m-(> = ‘{A}n‘-(? - (vl/\> Q. — hfv\-\) ‘Dl/\

and back to 3(i).

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable.
[Paige1972]
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3. DMRG for excited states DMRG-1.3

Suppose we have an MPS representation for ground state, | 3)

(0‘7 Tr Q [e] ()

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to l%),

Extremize: wH () - A &ulyg) - 7, 41“637 (2
Lagrange multipliers enforce ~ <wly D) = | and Ly 137 = B3)
Extremization w.r.t. ﬂ;rﬂ yields
A
o b
5 > <—p—¢ X n“] ﬁ' « AISC] f’
N h L \ . 5,)‘ > r—¢ S &
> > = ')” \ l A 16'
\ A Ne' A 4 ’f ' e , — =
£ ’va' P' S W /\/\/) L‘f)
R~

built from @ -tensors of 2 built from (HS -tensors of |%7

Generic structure of this equation, in mixed-canonical representation of site 4 [compare (DMRG-1.1.7)]:

3 t ‘\’ Ah(sl
efin = AATCAET, SIS E
with o'z (o’ 67 p') ; " o
, v “ fA3p N
a' o'ctp! K| 0‘°‘/$ e’ (
N A Lnnunkl kap “ o " €)
o' P!
o % ASK

with [ and R computed iteratively,

‘0‘
Il 3 rd
(‘/.. G
= i L' et W

rel ! <
L[d P Hff] 6 Lre"l o< Am [3 L L o' al /
Index-free notation for (5): HiAY = A 1AY + Lo \37 (A iﬁ) o (@
Define projector onto subspace orthogonal to |67 : PS = 1 - 13)<3\ (4)
: o
[with indices: ?i "'IA = & W = Sq Sa so that Psala S“ = 0 } (10)
@1
Project (8) onto this subspace: Pﬁ (?f) + lf))(%[)lﬂv Pﬁ IAY + o ()
(3) =0°
Pl D ias 1 D 1N
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P
\SH ’FS \A3 = ,’Lt ?3 \‘qv (1)

This is simply an eigenvalue problem, for ?3 H , in subspace orthogonal to [6‘7 . It can be solved

using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to | 37 :

Given an arbitrary initial state 1Us7 , project it onto orthogonal subspace, |u/) = 'Pﬁ\l)‘,br
(3)

and construct new Krylov vectors using

|Q§a“7 = PﬁH (O&f'(> - ‘U‘v\7 Aen - (Uv\-(> &3:‘ ()

Why not simply use excited states in KL ? Because numerical noise can cause the \U},\>

. -6
to be not exactly orthogonal, hence for J ‘dn-2 R \Uj Y x~ (o rather than 0.

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?S , as indicated above.

Block-Lanczos for excited states

. ab E( }
Standard Lanczos: represent action of H as
lO\ [ | ‘OL
H ['Uo7 = (Vov Ro + \Ulj b( =y
b .
Block-Lanczos: start with set of ™ orthogonal vectors, \ j
ilfo’ l> , - A M , and represent action of H as

H (U,,/") = \’Uoji b LS 3 (a.)L + \U“/;\> Qy‘)\\ .
with (‘-So/:! ‘ U'(l';'> = 0 . <U‘;\\\ U«/i> = i‘l
and ((M\“' = <Uol'|,lH (00,5'7/ Qﬁs )'l ¢ - <U],3(H ‘Uo,.z>

etc. Then the lowest M eigenstates of block-tridiagonal matrix [ oy “ﬁ \ “Bt l

give the Lanczos approximation for lowest M eigenstates of H & |° - \
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4. Two-site update [Schollw6ck2011, Sec. 6.4] DMRG-1.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

S g Yoep ﬁm Bee
) = (@) 16,016 Y 0 Ay o B o 1)
\ (AL PRALY [0y ¥ it YT KF -
‘- e (1
Then extremize simultaneously w.r.t. ~ 3
f } )
Afg and Bie) ESTRT {4"?““‘-?7 30&“})}
@)
X . A(C] ) Bleng
SR R P A G « Al Bruns
I 9 kc. N h > Y > > <
. > > % = ) \ \ .LG' ig' L L Q)
: ro'! 4\6:“ '\ /: L 'vo(; g \
o' p
close zippers from left and right = A X' A[e] p B[?-H\ ‘ )

> —7—¢
b e

t U -
ﬁggtp;g::]t: \-\a o (ﬂ BY = 9& (F\ B)“’ with composite index @ = (o(, 6 ¢, ";) )
and 1 « [$ < r 7 +’( ﬁ
' A A
a S N . —
K. = - > . ‘ = l l ©)
A /Io—' l&" A 4
P 0(, F% \ \ —(—“; : —

Loy g w[hll Rigan)

Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated (Ag) :

1
~ o reshape o =g SuD W s 7
updated Qq B) = ’ﬁ_a_@ﬂg _ % &f @

= o> e o
Y4 D4 DA D4

Key point: S has Dd singular values, larger than the virtual bond dimension D of 4 and 3.
Hence, it explores a larger state space, in general also including more symmetry sectors!
s + - -

D(,FM'(S \/)&'ﬁ x‘\‘x‘sﬁ(x)

e —>V—l—e

Y4 D D Ly . =
- v
This concludes optimization of ﬂ{d . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain.

Truncate down to ) and reshape:

in
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