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Solutions to problem set 6

Problem 1

Force-extension relationship for the 1D freely-jointed chain. We consider the
1D FJC model, with a two-state variable σ that takes on the value σi = +1 for each
segment that points “forward” in the z -direction, along the external applied force, or
σi = −1 for segments that point “backwards”, against the external force. The total
extension is then given by

z = b ·
N∑
i=1

σi (1)

To derive an expression for the average extension 〈z 〉, we take the ensemble average,
averaging over “states of the world” j , weighting the value that z takes on in each
state, zj by the probability of the state to occur pj :

〈z 〉 =
∑
j

pj · zj =
∑
σ1=±1

...
∑

σN=±1

p(σ1, ..., σN ) · z (2)

The probability for a state with energy Ej to occur is given by its Boltzmann factor,
properly normalized:

pj = p(σ1, ..., σN ) =
e−Ej /(kBT )

Z
=

e−(−f ·z )/(kBT )

Z
=

e(f ·b·
∑N

i=1 σi )/(kBT )

Z
(3)

where the normalization Z is the partition function (i.e. the sum over all Boltzmann
factors) and we have used the expression for the extension z from Equation 1.
Inserting the expression for the probabilities and for the length z into Equation 2, we
get

〈z 〉 =
∑
σ1=±1

...
∑

σN=±1

(
e(f ·b·

∑N
i=1 σi )/(kBT )

Z

)
·

(
b ·

N∑
i=1

σi

)
(4)

which can be written short hand by using the “logarithm trick” (you can verify this
by simply doing the derivative):

〈z 〉 = kBT
∂

∂f
ln

( ∑
σ1=±1

...
∑

σN=±1

e(f ·b·
∑N

i=1 σi )/(kBT )

)
(5)

We notice that the argument of the logarithm is just the product of N independent
and identical factors:

〈z 〉 = kBT
∂

∂f
ln

(( ∑
σ1=±1

e(f ·b·σ1)/(kBT )

)
· ... ·

( ∑
σN=±1

e(f ·b·σN )/(kBT )

))
(6)
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This allows us to write it as a simply product and “pull down” the factor N :

〈z 〉 = kBT
∂

∂f
ln
(
e(f ·b)/(kBT ) + e(−f ·b)/(kBT )

)N
= kBTN

∂

∂f
ln
(
e(f ·b)/(kBT ) + e(−f ·b)/(kBT )

)
(7)

Finally, we carry out the derivative with respect to f ; to make the results look “pret-
ty”, we can additionally use a trigonometric identity:

〈z 〉 = N · b e
(f ·b)/(kBT ) − e(−f ·b)/(kBT )

e(f ·b)/(kBT ) + e(−f ·b)/(kBT )
= N · b · tanh(f · b/kBT ) (8)

Problem 2

DNA overstretching transition.

a) Van Marmeren et al. argue that DNA melts during the overstretching transition,
i.e. that the double-stranded (ds) DNA is converted to two single strands (ss =
single-stranded). Quoting from the paper (last paragraph of “Conclusion”):

In conclusion, we have unveiled that, independent of the details of strand attach-
ment, DNA overstretching unambiguously comprises a gradual conversion of dsD-
NA to ssDNA.

b) There are several lines of evidence for DNA melting during overstretching presen-
ted in the paper:

1) From fluorescence imaging of DNA stretched in optical tweezers, they show
that YOYO binding (linearly) decreases when the DNA is overstretched (Figure
2). YOYO is an intercalator that is known to bind to B-form DNA and not to ssD-
NA. The authors note themselves that this experiment is not conclusive, though,
since it is not known whether YOYO binds to S-DNA or not.

2) Using the same assay, they observe that fluorescently labeled mitochondrial
single-stranded binding protein (mtSSB) starts binding upon overstretching the
DNA and that the amount bound corresponds to the amount of DNA overstret-
ched (Figure 3).

3) Finally, they perform two-color experiments where they label the (B-form)
dsDNA with intercalating dyes (YOYO or POPO) and the single-stranded parts
with fluorescently labeled mtSSB or RPA (another single-stranded DNA binding
protein) (Figure 4).

c) The experiments reported by van Marmeren et al. convincingly indicate that the
overstretching transition can involve DNA melting. However, they do not rule out
that S-DNA formation can also occur. First, as the authors note at least partial-
ly themselves, the measurements with intercalating dyes are inconclusive in this
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regard, since it is not know whether or two what extent intercalating dyes bind S-
DNA. If intercalators bind strongly only to B-form DNA, then loss of fluorescence
only means that overstretched DNA is no longer B-form, but it could still be either
melting or S-form. Even the experiments with the single-stranded binding proteins
do not rule out S-DNA formation upon overstretching. Strictly speaking, it is not
known whether they bind S-form DNA or not; this seems unlikely, though, from
what us known structurally. More importantly, even if we assume (similar to the
authors’ implicit assumptions) that the single-stranded binding proteins only bind
single-stranded DNA, it is important to realize that adding a binding partner for
ssDNA will shift the thermodynamic equilibrium in favor of single-stranded DNA.
So whatever equilibrium between melting and S-DNA formation occurs upon over-
stretching, the equilibrium will be shifted towards more melting in the presence if
the single-stranded binding proteins.

It turns out that subsequent publications showed that both S-DNA formation
and melting occur upon DNA overstretching and that the balance sensitively
depends on solution conditions (salt concentration, temperature, etc.), GC con-
tent and pulling speed. See e.g. Bosaeus, et al. PNAS 2012 (http://www.pnas.
org/content/109/38/15179.full.pdf), Zhang, et al. PNAS 2012 (http://www.
pnas.org/content/109/21/8103.full.pdf), King et al. PNAS 2013 (http://
www.pnas.org/content/110/10/3859.full.pdf)

Problem 3

FJC, revisited.

a) Radius of gyration
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b) Radius of gyration for FJC
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