Fermionic PEPS F-PEPS.1

Fermion signs in 2D fermionic tensor networks can be kept track of using two 'fermionization rules'.
[Corboz2009] with Vidal and [Corboz2010b] with Evenbly, Verstrate, Vidal first introduced them, for MERA.
[Corbox2010b] with Orus, Bauer, Vidal adapted them to PEPS context.

This is the approach described in [Bruognolo2017] and presented in this lecture.

Key ingredients: (i) use only positive-parity tensors
(ii) replace line crossings by fermion SWAP gates

Equivalent formulations had also been developed by:

[Barthel2009] with Pineda, Eisert, [Pineda2010] with Barthel, Eisert

[Kraus2010] with Schuch, Verstraete, Cirac

[Shi2009] with Li, Zhao, Zhou

[Bultink2017a] with Williamson, Haegeman, Verstraete, building on [Bultinck2017] (same
authors); these papers use the mathematical formalism of 'super vector spaces'.

1. Parity conservation
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Fermionic Hamiltonians preserve parity of electron number: P= (- Q Q)
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=>  all energy eigenstates are parity eigenstate, too, hence may be labeled by parity eigenvalue:
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So, we may agree to work only with states of well-defined parity.
Example: state space of local fermions, l‘(\ 1, (\&'. ‘PB ®
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Every line in tensor network diagram also carries a parity index.

R
[When keeping track of abelian symmetries, parity label can be deduced from particle number: P = -1 ]
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Enforcing Z‘stm metry [Corboz2010b, Sec.II.F]

To enforce Z ; Symmetry on tensor network: choose all terms to be 'parity preserving'.

Rule (i):  Total parity is positive for all tensors:
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2. Fermionic signs F-PEPS.2
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To keep track of these signs, we choose an ordering convention, say !, T ... N , and define:
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We have to keep this order in mind when evaluating matrix elements. Example: consider N=z:
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Let us repeat this computation in MPS language:  [Corboz2009, App. Al 1,

Order of vertical lines, from left to right, indicates order of operators acting on | 0 , from right to left.
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Horizontal lines show how to move operators in © (here ¢, ¢z ) into appropriate 'slots' in 1> or (%7 .

Line crossings indicate operator swaps. An overall minus sign arises whenever two odd-parity lines cross.
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SWAP gates

Line crossings keep track of operator orderings.
(=) needed only for exchanging two lines which both host a fermion, i.e. which both have parity (-).

A 4 1 4 4 1 4 4
1 orc .ﬂ orC ﬂ—orc C—+ ﬂ_ or C Cf C+

+ ¥ - 4 - ~
@) (+‘ (+) -)
+ 4 .

To encode this compactly, introduce SWAP gate whose value depends on parity of incoming lines.

{
Rule (i): & B (! b
Sﬁ «p = 3,8 £ S,p)
-0 f &) = p® =
4+ 1 otherwise
Operators [Corboz2010b, Sec. IIL.F]

Some matrix elements of operators involving fermions need minus signs.

Example: spinless fermions, consider two sites 1, | , with local basis
6‘.
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with matrix elements (<)
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When applying such an operator

to a generic state, line crossings appear.
These yield additional signs, which

can be tracked using rule (ii).
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Parity changing tensors

c_“" and C

change parity; but rule (i) demands: use only parity-conserving tensors!

Remedy: add additional leg, with index taking just a single value, § = | with parity P(g) = —

which compensates for parity change induced by c+ or
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carries just a single value, a SWAP gate involving crossing of $ -line and physical é -line




3. Jump move [Corboz2009, App. C], [Corboz2010b, p. 9] F-PEPS.3
) 18
Because all tensors by construction preserve parity, ?
lines can be 'dragged over tensors': X =
(Shorthand: (6;) = p; ) B\ Py
before jump after jump
This is trivially true for p'= 4+ ¢
since then all swap signs are  + ( * S(p; +) forall p;
Consider P' = ~-t
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General argument: parity-preserving tensor has even number of minus-parity lines:
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(sign)oefore * (SigN)after
oLebefore

all minus-parity legs
cut by before line

- (sign)before = (SigN)after /

T §(

F & after

all minus-parity legs
cut by after line

ber) =

(=)

total number of
minus-parity lines,

242

= (f)

which is even

Jump move allows tensor network diagrams to be rearranged according to convenience:

} d
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4. MPS examples [Bruognolo2017] F-PEPS.4

Nearest-neighbor
expectation value (Wlehely) =
needs no swap gates:

Time evolution of

has same effect

non-nearest-neighbor
as Jordan-Wigner

hopping operator:
s string

Due to jump moves, the
red line and light brown lines

connecting (, and C:
are equivalent (use one or the other)

Fermionic order in a PEPS

Choose some ordering for open indices and stick to it!
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Absorbing SWAP gates




