NRG IV: Dynamical correlators NRG-IV.1

Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis [Anders2005], [Anders2006]

D
The combination of all sets of discarded states constructed in (NRG-IIL.5), { | L3 e>£ | {= 1.:,... N i

forms a complete basis in full Hilbert space of length-N chain, known as 'Anders-Schiller (AS) basis':
@(proof follows below)

by definition exact basis

Z" |é‘“§<§”l = 1d~‘dd traniformann Zz 7f> 0
N

e Lt
”ko
These basis states are approximate eigenstates of Hamiltonian of length-N chain:

-(”[MQ? < llu e)l = E, [oce) (2)

Here we made the 'NRG approximation': when acting on states from shell £ apprOX|mate l»l
by ]’:‘ i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not
relevant for capturing course structure of shell £ . The AS basis thus has following key properties:

» For small ( , energy resolution is bad, degeneracy high.

«As [/ increases, energy resolution becomes finer, degeneracy decreases.

Projectors: 61 6,
_ Ay X % lel kK ¢
Projector onto PJZ = 2 |weS e = )X (1] (13)
sector ¥ of shell { : ye te kb wbel e
4. St
K and D sectors partition shell into two )
se!
disjoint sets of orthonormal states, hence PL P,,y = Sxx IOLX )
. K ~ ~ z
Refinement of K sector of shell ¢ P M Q}“ ¢ Py, L )
Iterate until end of chain: = P, + P;:z - P}; . ... Q)
n
£ N
1< X o K D
Hence: P, = 2 P{ w = 2. PI.' + ?z" =~ 2 P@' (-
(forany 2> ¢) X 252 L'se
D L3 L4 D
For / =4 - ol = P +« P = 2 P Usgf
d X 10 10 e ‘___l z
i/'v—’o—' _ Z
- =%
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is complete!
49 p¥ if L L
y (a4, 1 13) ye! Zx (
General projector products: ’(3[ = ¢ Py if L=/ (1a)

Ry ¢ )
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shorthand system environment
g L L, =
=2 L ——>%0 | | ... |
Ly
L G, b b u

Transform to basis which diagonalizes sites “p to l o , retaining full (F) spectrum at each step):

2 Z { ¥ | F (F
a & TFITF ¥ ¥ ® ‘ \ T | |
¢ 'qu fo lp'f‘ ﬂ,{-r, ]
Split into discarded and kept states. In latter sector, move one site from environment into system:
D
= Z ( { - [
2 i — 3 B \ [ ]
° ¥
split ‘(llf ,zo 4(,14 :to s N
+
a { {
22 _ T _D KKD g 3@ I
2o |
lﬂf lo L{-(‘ ﬂon_ v
N v— I\ r—————‘
larger system smaller environment

Now diagon Iize split again, and iterate:
K

i 4 \
zﬁ’zz.*(“ TF T K — e ( [ L
split + ¢ LH ﬂon.
K ( y By Ko
Ef‘%,el\‘ ‘ FFKPPK@ L
“e Eof( ﬂo"'z N

Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded":

» ¢t g | \ - L Ko

2 2 > YD i
T v T T : K N

(BRI N-t N

4

D 4
‘ ‘ ‘ LN A

z ) |\ T | N N : > )\ D

A g K

The collection of all terms marked is the resolution of identity in AS basis:
N D K

\.

= ZZ* — D ® | \ I

03’ ar -~ \ ! ” - Nl
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2. Operator expansions [Weichselbaum2007], [Peters2006] NRG-IV.2

non-trivial only on sites —¢, ..., N4

:

Below we will show that the Hamiltonian and 'local' operators have following structure in AS basis:

( e \z
C|] =£o=(
P EMDK

! R
S o | E[QKD 2ot
: S MIII

Hamiltonian is diagonal: General operator: exclude KK to avoid overcounting!

r\u("")__ ’ DD A _ FKK
HY %% Ey \o(’e>£ £<o(,c| , B = % XZ 2 2 |°‘e\3( [B[MXT I @)

'x bl €

|
~
B= |- - = Tq g ®; B =

,I Hm D/ .

Operators are diagonal in 'environment' states! Hence environment can easily be traced out!

n
The expression for H V' follows from (Iv.1.2). That for a local % operator can be found as follows:

A
Suppose 3 isa 'local operator, living on sites < £, (e.g. on sites """P and o) :

61w 6o

A 24

B - (£ l@le-0} o t of o .. ot @
sm‘, c/ 62 6o, 6eut 6¢ata Sn

Start from the local operator's exactly known representation on length- 4 o Chain,

Py Xl xl U‘ X ~ x
B =) Z l«'e) xe| = Z Buy “
vy oKae £ [Ew"]’] . £<o 1= % ’
G{K,OS - Ax
Define operator projections to X'X sector of shell [)D = P B ?l; ()
2 (2] y
e | w1 « 4
% =~ X \l\
*Te < { T
Sy Lo W o [
By y = el ¢ - K (elx
\ ("8
e - l (no hat: matrlx elements)

La © \ < T ©
with matrix elements

/ "X ' :
EX = 4 \ 4 *)
(ﬂ\l ox! " /!
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LIRS P, gl V1 Le g o

£ A L KL“ l,

can be computed iteratively during forward sweep, starting from £ = £,

T A1k (g e
S[c_(] ‘E‘tl =\ @ l<] (BU—(IKX F[A[ﬂx\ X ®)
o

only KK enters here! X 5¢F
<
Refine KK sector iteratively, using f’a' (I ) Z tx
+(
N ~ n ¢k’< ~ AP A
K - K & AK _ X X K »~ 2k
Blow = 060 = Z 0., %% v G B%
N *kk ,
Iterate to end of chain: = > qtzkk 1’5}‘" é ':Qx _ ”2 Z 8 ¥ (o)
- X
Lo xix 0>, xx w
A Z ax %Kk A I Z F KK v
Full operator: B = Bro. 2 8y = ) (1)
N T G L ""‘i::)z x H\

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

A -nN' - _-a"{: Kk A ,
B(4) = (ME R 0 2 2 B (4) @)

with time-dependent matrix elements, evaluated using NRG approximation (1.2):
A . e IH:
x! o ;o ‘Hll ; —tHgf ¥ X (E. €,
{Bm &Dl = Qe 0y = By, 2
Madoban ~ N

Important: since we |tqrat|vely refined only KK sector, the time-dependent factor is 'shell-diagonal':
factors with ¢ < (B

\

t
t £ # X do not occur. Using different shells to compute
E,' and £ ,would yield them with dlfferent accuracies, which would be inconsistent.

(12, r3) FKE A gt

Fourier transform: 2 (1) ja”‘ iwt g B(4) = % %{ B[‘]x ()  9)
¥/ v' x! o L 0
B x‘“‘l « = By, Sle-(E5-6) re)
Operator product expansions: é a Proceed iteratively, refining only KK-KK sector:
l;)K A K {DK“é‘DKC‘ K (m«) NI ~x o oo ¥ @)
e Crqe = T B8 ?y Z"Q&l 8 Pblc?lu B ’(Z',F[h']x'cfxﬂxn T
XX
Start from f =,€° and iterate: ¢ ((9)
P A X Uoegec ekec TR
BC = Z B[l] X! C[lb] x’ Z Z. K[Qx]‘L'CH]X" = Z Z 8 x!
xx'x" £y, xx' L xxyx” X
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3. Full density matrix [Weichselbaum2007] NRG-IV.3

NRG approximation

)4
AT -« ~ .
faechi i zz ey T el = 2 ol
z B
Y, P&]D o FE,{
= AP D —“Pte«
- %:,,o ﬁfc]'l) 4 [Pfc]o],,' 8 « i_z:':—-— (2)

>

. A . A ox! ¥ 2 ax -
Sector projections of f for shell € , defined as _/)l'e]x = ) /o PB , are given by:

N
~ b Ak (u_ﬂ FB SYEY: . ©
Prss . Pl o Tty Proe = Pig=
provides refinement for rest of chain density matrix is sector-diagonal

Reduced density matrix for length- Z chain is obtained by tracing out environment of all later sites:

o

v _ ax ( - X - %D (g)o )
(e - (e l¢)
f N S!e >L JO{CIY] Prs * fax

-1 degeneracy of environment for shell ,e
DD-sector:

/\S&/
?t[exbv ijb j\m],(] :j famb )

|nd|cates sum over local
basis due to trace (no hat: matrlx elements)
with matrix elements

ut ML E ¥ > k-2
[Pl = [Preso] 4 2. LA «
Lo Iof —
€ 2 =
D D FEB density matrix of e
- relative weight of
where £ L = Z e " ¢) D-sector of shell ¢ D-sector of gsheII £
(without environment) to total partition function,
is partition function for D-sector of shell £ with Z_ 20 =
(without environment) e ¢

KK-sector:

.\ N
= K
f’[elK - 2

:i@ F[e:K @)
]

K N ke 5 —1 %

({) = 2 T1U® Prao :Q\ %;}’x{’rm]x “

Koe A 3

Starting at { = ,the KK matrix elements can be computed iteratively via a backward sweep.
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thermal

‘”z suppression
The weights %5, , viewed as a function of L , - counting

are peaked near [ , with a width of five to ten shells (’ol\ Suppression

. LT—L
(depending on A ‘ A and ’qu‘,f ) zv"l
- S’&
Reason: the Boltzmann factors ¢ /g S in partition | = ;
ions vi L L
functions yield < & for E5 s> T or ~ | T /\_1,/1 T

for Ef << T . Hence

- (£~ —12~9)[2
® "tz © TR JE RA o b:-t A -
£ = =gt =d e U
2 2 2 e fEe > 3
gy oe Loy ¢

J-; ~ J-N-ZT

sum over environment of shell Z 7 yields
Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to
temperature have dominant weight, while avoiding the brutal single-shell approximation 402 = s Lir

Thermal expectation value: S ki due to trace
,\ A n (z.18) _rrax °oX
(8); = Tel36] = 2 ToPrgxBieg o] (o
definition shell- £, xx'x "
representation @ S X !

c, operator trace

= %ausms[ﬁ (2] x B[z,lx\/ %stes‘[[f)uo] X 5[&,] x\ (v)

trace out all sites £ >4,

x X
X
X A
X @, “
Lo

trace out all sites £ < £,

S~ matrix trace (close the zipper)

— X
:% ‘lil' [jo[fo] XB[(S k] = x,d,( ﬁ[l’o] Xl [Bm r'{( (13)

can be computed using solely shell- [, matrix elements
(but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products,

with full density matrix replaced by reduced density matrix.
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4. Spectral functions: full-density-matrix (fdm) NRG NRG-IV.4
[Weichselbaum2007]

AS basis, being complete set of (approximate) energy eigenststate, is suitable for use in Lehmann
representation of spectral function, with the identification f | oz>§ = § IoLe);(’> . A=A .., Ng
(NRG-II.1) "
RC ‘o A ~ _ [ S
47w\ = \{d_t et T p B ¢l = Tr BW) ¢ (1)
C d f 2w Cp

trace is cyclic

Insert representation of these three operators in complete AS basis:

Tf[ZZZ IM\>~ [T)m‘w) } é&' ‘Zéi [C[g X z;)%z,éux,ﬂ>i U)[abh}mu f(rx,e‘} @)
X X'+ kK <Y £k

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.
Simpler approach (leading to same result) uses operator expansion (2.18):
# KKK

A5 = T8 ) = 55 Tt[émm"x, (cp)m'xn] ()

£3( xx'x "

trace is cycI|c S xit

Perform trace in same way as for thermal expectation value, (3.10): trace over sites 6 > £ yields

]
reduced density matrix, trace over sites ¢ ¢ £ yields matrix trace over shell { :

P 0

%y = 22t B s P, | Gt o1

Ay = e Sh; { (@) Py by : 2
£ KK L ¢ x! x et

= Z% Z{B(q xl S §(w-(Ea-€)) [Cm Xme] p s

oLet'! /’ )

resolves frequency at scale )~ A~ U

Each term involves a trace over matrix products involving only a single shell.

Easy to evaluate numerically.

E w
To deal with delta functions, use 'binning': = T
partition frequency axis into discrete bins, —
and replace S(w -E ) by bin function: L 2 L) i
I if E el = I
3w - *
o otherwise weight per peak weight per bin

Thus assigns energy & to all peaks lying in the same bin.

Finally, broaden using log-Gaussian broadening kernel, (NRG-III.3.4).

Page 9



(at particle-hole symmetry, €4 =- U[z

Spectral function of Anderson impurity model
and zero magnetic field, £=0 )

¢ f
/45(‘0) - Ad’ds/_w\ . /44(5/5 (e))

Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-IIL.3.4).

Result: for [/ << | (eg.=0.1) and T <2 Tx (e.g. = 0), one obtains

T/Tg =0 |

- NRG correctly captures width of central peak

T // around # =0 , the 'Kondo resonance'.

NRG overbroadens the side peaks,
/ which lie at high energies.

A('W‘)/ﬂ(o)
|
|

0.5

—— The true form of side peaks is narrower.

: : : Over-broadening at large frequencies can be
0.5 0 0.5 1 reduced using 'adaptive broadening' technique

kl w ~ Wz [Lee2016].

Tl‘r\/‘is(w =o) = |

<ord i Dknft is large enough.

~ -

Exact result for peak height at T=0:

NRG reproduces this with an error of

With increasing temperature, Kondo resonance broadens and weakens as | approaches and passes T.

T/TK 4

1} T/Tk 1
0 0
0.1 0.1
— 1 1
=N
§ 10 2 10
~ 100 ~ 100
3 .. =3
;E/ 0.5 ;Z/ 0.5
0 L L . 0 . . . .
-1 -0.5 0 0.5 1 1072 1071 100 lol 102
w uJ/TB
Sum rule: we expect (for any temperature): )
—

Jo At = CANAdT 4 (A LA D, = o

-5
Due to use of complete basis, fdmNRG fulfills this sum rules to machine precision, with error < o ‘
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