DMRG-I: Ground State Search [Schollw6ck2011, Sec. 6.3]

DMRG-I.1

* The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken
Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit N
[Ostlund1995]

: Ostlund & Rommer

» Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

» Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]
« Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, 1>, as variational space.

A
Minimize <1l' | H (1[17 in this space, subject to constraint of unit normalization, <l(»f'lf§ =] .

Hence extremize
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_ al & al ) , p P
In the notation of (MPSV.3.11): |- , Ay = }\Am with a'= (<5 £)

This is an eigenvalue equation for Qm and can be solved with standard linear algebra tools,
e.g. Lanczos algorithm (next section).

More generally: if ¥ isnot represented in mixed-canonical form, one obtains a generalized ( b)
eigenvalue equation of the form H A = NA |, with N defined by r.h.s. of (5) .

Use that 'eigenvector’ ﬂ[a yielding lowest eigenvalue (= current estimate of ground state energy) to
'update' MPS, then move to next site, switch to mixed-canonical form of site Lot ,
optimize ﬂw.(] , etc..

updated
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'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.
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2. Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG-I.2
« Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H
« Prerequiste: an algorithm for computing || [w* , for any vector Iy . '
* [
Yo H 0 ¥
We seek the extremal value of E [\q,)& = {ylH 1w )
<yl¥d
Denote extremal value by f:-':,3 = min Ef)q?] = E[l'L[/S7] @)
The direction of steepest ascent of the functional £ [(’Lﬂ] , evaluated at l-\|,7 , is given by
=\ ¥ {y|H |
'functional gradient": Sc_ml = u - M l ) (3)
$ <y <HIY) <y ly)®
- H - el lyy = V4, &)
e ty)
Moving in opposite direction will thus lower the energy:
E [ 4y ~ « 14,7 1 Z E‘[ ]q)] for small, positive &£ (s)

To find optimal value for o/, minimize E {\'L\J = ot \’lhbk w.r.t. the 'variational parameter' o/ ,

in the space K = s()uwil%? FRETR) y = 5pre 3(1('7/ Wy

Construct a normalized basis for this space (for a random initial state () ):

(
First basis vector: v,y = L
[Ty
Second basis vector: S~ L) = \J",) = Nlw) = ‘'uwrdwl Hiv)
normalization factor, orthonormalize T
such that (v, (U5 = | w.rt to (v ?
o (D - L( = m = Lyl H (o)

Now find a matrix representation of H in this space: define

bo = CulHIw)  a= lfls) | k= )T

then

W

G
I"['Utb = l'U'I> (0( + I\IO Qb

hence in the space K i, the Hamiltonian has the matrix representation

[[CodHIwY  Lultio) ) [ W)
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<U’5[ H "Ubv <Jp‘ H[Uc) Qe (O|k-
HK[ = = ()
{u, I} V) (v [ H (U (Ol G,

The ground state of HK‘ , say l(i?k , yields the optimal choice for ¢ . v
\

Now we could iterate: use lS 7!( as starting point for another optimization step. Convergence is
l

rapid. Monitor quality oFresuIt by computing the residual energy variance,
3
rlipl = 0 (H- )l = Ginie) - alewy o

and stop when it drops below some threshold.

Krylov space

After [, steps, starting from (U‘O , the resulting vector will live in

KUY = o tlod, #lved, giiwd oy W) 3w

'Krylov space of H over |U.9'" (dimension L4171 ). )

]

I

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K L, ,then compute its
ground state. (This is faster, since it amounts to using [ simultaneous variational parameters

instead of L. separate ones.) To do this, iteratively construct a 'Krylov basis' for KL,

Krylov basis
As before: ‘m\U'b':—' |5) = Klve) = aoluy (16
normalize |

Third vector: LZ\U‘D = |5G) = H \%y - Z \Up 413-1\-\ ls) (1)

J:e
X
=) - tsy ar = (v b (8

<15||HIUD <J0\H‘15(j

where (QL ('_1} m 0:.) (U’z_l H lu,) (a)

Note: <A (vo) =0 ,since Hlu,) & s(;ml lu.,>/ \vl)z (20)

2
Fourth vector: &33 l‘\SQ = ll’g> = H (152_7 - Z \U’\O(G\SI H(‘U‘l\) (v
\]=O

e R A N N T
{%

i (20) ¥/
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Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step: ‘ON\WMD = ((A)i“) = H lV\) Z \o@ ><u | H-lv\3 (13)
‘S—O
N
\-} ‘U"\> o ‘Uw7 [+ 2V - lv«-‘> (5\4 (LQ)

with Q. = {u. |H 'U.,.> ) LM = (Ul H‘UL—(> (@9

[If it happens that ‘3 = o , pick an arbitrary \U.M_, > orthonormal to all |v:i)’ j =0, .

nat

Throughout we have: (tfvm(H (v~ 7 = p for \f = 0,..-/m~1l/ (268

since (zu)

H \UJ (& $€&.v\ 2 \ 6&“ U's)/ { U‘s_(> 3 (23}

Hence, rearranging (24): H(’UQ = \15,,,‘7 (A..x + (UO a, + (’lfw,.) &M, (28)

Hence, in KL , ( Go (o’,' )
HK I
H has tridiagonal form: L b, a, (o:
¥
b 2, ('-‘3
l()::> K 5 .
¥
GL-‘ L)L
b G

\ J

Ground state of H K satisfies the eigenvalue equation (HK )‘ (L['g) J - E%‘ (Lt \[; )u.
L L/

L_
L
Thus E, and \%LQ = \v‘ ? (1+
5 1 j‘ S
are the best approximations, within the Krylov space I(L, of true ground state energy and ground state.

Note: N,L7 can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from U3 ,

The Lanczos scheme converges exponentially fast, with a rate ~ [gap to first excited state]/ C
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Summary

1. Start with arbitrary

[Uo)
2. First iteration step: (i) l:’;) = H v
@M o, = GV
Gy 167) = B - a.tuD

3. General iteration step, for W> |
(i) g,’\ = <{}»‘ 80\)

(i) If Ln + o0 ,then (va) =

150/ b

else, pick \t,)  as arbitrary normalized vector orthogonal to all \\ID, e fuwa?

iy 15,9 H s,y

i

(iv) G

1

Cur LU
V) (e, Y

and back to 3(i).

‘6&\-(7 - (UV\> [/ N (U«\-qv K;:\

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable
[Paige1972]
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3. DMRG for excited states DMRG-1.3

l0'7 Tf ﬂs[u

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to lﬁ),

Suppose we have an MPS representation for ground state, | 3) )

Extremize: i () - A uly) - ')g.'_ 4%\%7 (2
Lagrange multipliers enforce ~ <wly D) = | and 41(4%7 = ()
Extremization w.r.t. ﬂil] yields
« P e 1 5
0 « N} f « A p
S 10y L ——> —p—= 5 N "
> > = ')‘( \ h lﬁ" + ')L <‘\ 16"
£ 4 ) ®»
p R

built from A -tensors of 2 built from oqg -tensors of |67

Generic structure of this equation, in mixed-canonical representation of site { [compare (DMRG-1.1.7)]:

v
G W Yal 3 (»
HY A = A A+ 2\13 W qt gt D gt 3@ o
with a': (0", 6‘: P')
I P
) o “ A58 .
o _ o(|6'|P' _ 5 p(o-,s F' (
3 - 3 = Ly Mnm 1z[w][S 7 ®)
o' P
- 43
with [ and R computed iteratively, " “ R ,a(
ﬁf/ ﬂ: 49 "
«* ot = 1 oL wwan e
L[el x H[e] 6n' L[e—ll < Afcl "3 L L o A* )
Index-free notation for (5): HIAY = A I1AY + L \37 (A \ﬁ) o (&
Define projector onto subspace orthogonal to |67 : PS = ~ |8)< jl (4)
I & &' o T al o
[wmh indices: ?3 a = 1 & fj ﬁa so that '(33 4 (j = o] (o)
@ 1
Project (8) onto this subspace: P ( + (‘)543\ )W'\> P IAY + o @)
S . J
(3) =0
0D 1l N 1aN 1 D 1w



Ps H (’3 nmy = 1, P3 1Ay uz)

This is simply an eigenvalue problem, for ?3 H , in subspace orthogonal to 13‘7 . It can be solved

using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to | 37 :

Given an arbitrary initial state  1U=7 , project it onto orthogonal subspace, |u!) = FS W),
()

and construct new Krylov vectors using

|GM!7 = Pf) H (OM"() - "J-V\V Gen - (Uv\-(> gf ()

Why not simply use excited states in KL ? Because numerical noise can cause the \U},\')

16

to be not exactly orthogonal, hence for J <n-z IR \vj Y o~ rather than 0.

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?ﬁ , as indicated above.

Block-Lanczos for excited states

‘ 1
ao B(
Standard Lanczos: represent action of H as o
lO\ [ | ‘OL
H [’U07 = (Ve & + WO b( =
b .
Block-Lanczos: start with set of ™ orthogonal vectors, \ j
ilfoﬂ“) , L=t ... M , and represent action of H as
s ’

Hlw,i) = \vﬂ)ﬁ);(a.)i . \U‘JQKXD«)S&

with 4150/‘3\0(,0 =0 (v‘;s\v‘/g‘? = g

and @) = <Uo/ilH (Uolz>’ QD;)S( = <U'l,:((H‘U°,£>
( +
e

etc. Then the lowest M eigenstates of block-tridiagonal matrix [ l"‘ “ﬁ \ “Bt X

2

give the Lanczos approximation for lowest M eigenstates of H & |° - \
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4. Two-site update [Schollwdck2011, Sec. 6.4] DMRG-1.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

e 06 Ay 3
) = (8 16 e )1 Ay By ™ SN ;h {fﬂf;\K .
d o tedytpr
o | £ eel\@ (0
Then extremize simultaneously w.r.t.

i 5 2 9 |«y)H - A<rig) | =
('\m and B x| b&"ml aﬁﬁl{ LALAR'D. Ay "F)X

(-\ (1‘
0 Brng 4
? > M T G « A{el By b
\Jk & Lo- N N > < > > &
< > > & = A ~ h\ le’ X&" L SR ¢))
N 4\0—’ 4\6‘ A A £ & *'fo‘, p, \
- ) LN N \
o« g~
{
close zippers from left and right = A o A(g] r3 ety ¢ )

7 > &
et

ﬁggtrzgﬁt: \.\a'a (q@a = A (Ag )“’ with composite index @& = (el, 6,7, {,) )

and ; ] s & ﬁ
\ h tV f
HA(& = = (Q
I e
>\ \ +0(, l —

Lfe-.) wf@) w[?u} Rres 1)

Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated (Ag) :

reshape 1

@5) T e s U 5 U 0

updated =
Dd D Pd  Dd

Key point: < has dimensions Dd ¥ Ddl , hence explores a larger state space than previously( D)
in general also including different symmetry sectors!

-~ ~‘§ (o ~
Truncate down to D and reshape: P (A. (S' v ) 7= % Ay B g @)
wo D Y T L

This concludes optimization of ﬂ{ﬂ . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain.
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