MPS-1V: Translationally invariant MPS [Schollwbck2011, Sec. 4.2.2] MPS-IV.1

Consider translationally invariant MPS, e.g. infinite system, or length-N chain with periodic boundary
conditions. Then all tensors defining the MPS are identical: H [e] = F] forall £ .

Goal: compute matrix elements and correlation functions for such a system.

1. Transfer matrix

Consider length-N chain with periodic boundary conditions (and A's not necessarily all equal):
Vs indicates trace
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We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)
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Assume all A -tensors are identical, then the same is true for all T—matrices. Hence

gy = T(TVY = Z ()" 22 (1) g
\

where ‘l; . are the eigenvalues of the transfer matrix, and )c‘ is the largest one of these.

Page 1



where tj are the eigenvalues of the transfer matrix, and Jc‘ is the largest one of these.

Assume now that €l -tensor is left-normalized (analogous discussion holds if it is right-normalized).

) _ ) (MPS-1.1.22)
Then we know that the MPS is normalized to unity: | = {Y1YD (1)
N
(MPS-1V.1.8) implies for largest eigenvalue of transfer matrix: ( t u) =1 = bo= o . (2)
Hence, all eigenvalues of transfer matrix satisfy \'t ‘ 6 £\
eigenvector label: j = 1 B)
components of eigenvector
. \
= / — «
Claim: the left eigenvector with eigenvalue 'f\'}:‘ = [, say \/j ) is (\/ )o? = :_”.. oL (A
Check: do we find Vq Tﬁ}‘ = \/43 2 ‘vector in transfer space' = 'matrix in original space'
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2. Correlation functions MPS-1V.2
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cyclic invariance of trace
Let \/J , f S be left eigenvectors, eigenvalues of transfer matrix: \/J T = .}: . \/J
J

[ or explicitly, with matrix indices: (\/‘) )a T ’ b = {J (\/\‘)s ]

Transform to eigenbasis of transfer matrix:

H"'(l'[')—l 1 (-g'ﬂ‘
JJ
For M= & , only contribution of largest eigenvalue, 'L j! = ]L,( , survives:
Cp, N2 Jc Z (T L ("zl”‘(q' !
i (gl]) [ (ﬁ D[ﬂ) {
Assume (3 = ’(‘)+ = 6 , and take their separation to be large, £ —-,C’ —) @0
(e} {e"

R = (G A \(Ta)‘i\L(%)’l’“h..]

L-¢
Coe <l OwiOml®)  Woow iy i, o( (&)
<u,\q) Lylu) L4 —w
. ('—(—o \( , Fo 'long-range order’ ‘£—£ ( I/g
If ('—(—o \( , = o 'exponential decay!, ~ ¢

-
with correlation length £ = M« ( {%‘ z)]



3. AKLT Model [Affleck1988], [Schollwdck2011, Sec. 4.1.5], [Tu2008] MPS-IV.3

(thanks to Hong-Hao Tu for notes!)

General remarks

* AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988.

« Previously, Haldane had predicted that S=1 Heisenberg spin chain has finite excitation gap
above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b].

» AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a
'Haldane gap'.

» Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.

« Correlation functions decay exponentially - the correlation length can be computed analytically.

_ . . 1\ f P
Haldane phase for S=1 spin chains f ‘% .Lj 7 ¥ /.1
] z N
S=1
Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin S=1:
N—~( R R 2
u@,& = Z Sl S‘e_“ + /6(51 : 3[4’( » (|\
={
Phase diagram:
pure
integrable point Heisenberg  AKLT integrable point
T o =
. . 3
dimerized phase ( — , gapless phase
gapped Haldane phase: ﬁ e ("‘/’)
(includes Heisenberg point and AKLT point)

Main idea of AKLT model: ”AKLT = H 8% (F =Y ) @
is built from projectors mapping spins on neighboring sites to total spin ;"Z = YA
Ground state satsifies  H AKLT ‘ ﬁ 7 = 9 . Toachieve this, ground state is constructed
in such a manner that spins on neighboring sites can only be coupled to Sfoe“ = 0 or |

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom;
One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the S=2 sector in

the direct-product space of neighboring sites, ensuring that H ALLT annihilates ground state.
traditional depiction: MPS depiction: spin-1/2's live on bonds
S=o =
L —— ,——2«—0‘ S=o $=0©
Z®% @ t®©% T T T
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4. Construction of AKLT Hamiltonian MPS-1V.4

Direct product of space spin 1 with spin 1 contains direct sum of spin 0, 1, 2:

%, ® ﬂ/ = %0 ®ﬂ,®/fL 5‘=l S‘=l ()

Projector of % ; ® ﬂ ( onto % s (with S = o 1, 2 ) @)
(3 74 - -4 — - L
P:,(-z_) = P,(,z) (6,,Sz> = ¢ N [(S,f&) - S'(s'f/)] (3)
Il S'es
Y
sites 1,2 normalization factor  yields zero when
total spin = g’

: = =\ 1 - = =t = -
Using (S';-«» Sz) = S 4256, = 255 4 ¥ , we find for spin-2 projector:
b
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—_ 7z — “

= C { 4(561) + 1 %5 + 8\ ©)

()
Normalization is fixed by demanding that ’P('.L must yield [ when acting on spin-2 subspace:

(2)
= B, . = ¢ [ 2tr) -0 |l 2ler) - e | 0
€,+5,) = 2lesd) "
= = C b-y = (= 24 )
(Z‘ \ —_ s . = (2) > o
?(,1 = E(SpSA + "Z‘ S1*$: +:‘§ = PI,I(S‘, Sz = projector on spin-2 subspace @)

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins.

( \ - -
Raker = £Z ﬂ;‘(Se/S“,) (10)

-—

For a finite chain of N sites, use periodic boundary conditions, i.e. identify 9 il =93 K
+

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for HA ket -

=5 A state satisfying HAKLT [1{«5 = o(wp = o  must be a ground state!
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5. AKLT ground state

MPS-1V.5
S=o S=0
L f > A S =0 S -0
z z z z Lz J:'-

S=|( 5=\ 5= S=1 SL SLl

On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2 degrees of freedom:
41 = {13y

Is=LeY = ley = 1oy = &ty « i)

[-1) = LLSUEY

On-site projector that maps ﬂ./r_@ ﬂ 1, to ﬂl
C o= |+15Q K+ 1035 (CTICH] « <uldt]) o 1=K

Use such a projector on every site e : % g, %pn By,
{

Cryp = oy gy Ll b

bt b4
S Sun
with CH = (' o) CD___ "}:(o '\ C"' = (g ?) &« 1— Clebsch-Gordan
ool 2\t o)y Coefficients
for coupling
h®h = |

Now construct nearest-neighbor valence bonds built from auxiliary spin-1/2 states:

L L (0

m

L
o ()

Haldane: 'each site hand-shakes with its neighbors'
AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds):

ﬁt-lv Xy PRe v oy, ﬁm\'/

€Y= T ¢ TIY), =
q @Tg (] ®a\17¢

Why is this a ground state?

1
Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) oD /@/Z’
eliminates the spin-2 sector in direct product space of two spin-1, ,___.3__,

hence spin-2 projector in HAK Lt Yields zero when acting on this. '2L @
(Will be checked explicitly below.) Y
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AKLT ground state is an MPS!

— ~ gy u 4,
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Explicitly: 6k = 4+ B+ (o o) v (‘( o

Not normalized: go. é"" = ii(° { \(0/;) + é(‘, ,)(-‘; T 4 "i(f,oo){:,:) :7?‘ 1
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Remark: we could also have grouped B and C in opposite order, defining

Pe-10g G F"' Pe _ fer_%p  pe
= B C X -
262

+
| This leads to left-normalized tensors, with A- g R*! ) At = B*® |

N 6e
A pe
g %

() - - . <
Exercise: verify that the projector P (s £ Ses \ 1; ; j 5
L,Le ‘ !

from (MPS-1V.4) yields zero when acting on sites ﬂ s /(H of ‘65

I
Y
O’
Y
MY

el

Hint: use spin-1 representation for (3} . TS’( + 1\ o9

=t

(>

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector L@_@_@_@_@)

connecting sites 1 and N. Then ground state is unique.
For open boundary conditions, there are 'left-over spin-1/2' degrees of
freedom at both ends of chain. Ground state is four-fold degenerate.
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6. Transfer operator MPS-1V.6
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To compute spin-spin correlator, C,“t = <(1\Sfﬂ S[C'J \@ , we need
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Exercise
(a) Compute the eigenvalues and eigenvectors of T
\
22 ~le-el/s \
b) Show that ~ , with =
(b) Show tha Cé,e' e Wi £ yx

Remark: since the correlation length is finite, the model is gapped!
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7. String order parameter MPS-1V.7

s .
AKLT ground state: Ij) \%77}[ ‘?"g”] with Gké{+LQ’li
+1 z + o -t z -
2 = T, B="RT 8 =751
& L [o - 1l(oe L[l o
with Pauli matrices ( = (z( o o) T = J'i( { ¢>) , T}: 2 a—«)
Tl o ° A for Pauli matrices
Now, note that B @ < [ B = D raise, do nothing,’
—_— raise, yields zero

string of '@0

Thus, all 'allowed configurations' (having non-zero coefficients) in AKLT ground state have the
property that every t ( is followed by stringof © ,then + 1.

Allowed: 6, = ... lpoo -tolocoo-t1o00 —|
Not allowed: !0—:"5 = .. locoo | 0| or co0o~lo-[lle
— 3 = = —

'String order parameter' detects this property:
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Exercise:

Show that the ground state expectation value of string order parameter is non-zero:

lin v < ’\Sw“j ) = -4+
Rt 6 g 1

N e

Hint: first compute | w5
e

Y oo -l bt 0o —to+(

Intuitive explanation why string order parameter is nonzero: 1 oO[+ o ~(¢p «! 0~

lS) |v>4“
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[§) = lg 2 4°
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For the AKLT ground state, there are six types of configurations; four of them give -1, the other two give 0:
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probability to get 1 or -1 but not 0 at site ¢

]
probability to get 1 or -1 but not 0 at site ¢
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