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Problem Set 6

1 BV quantization - photon

Consider the electromagnetic action

S0 =

∫
−1

4
FµνF

µν . (1)

We want to derive the BV extended action of this.

(i) Since this action has a gauge freedom, given by δAµ = ∂µα, we need to introduce a ghost field η to
account for that. It is odd and of ghost number gh(η) = 1. To those fields, we add anti-fields Āµ, η̄.
Using the general formula gh(φ̄a) = −gh(φa) − 1, calculate the ghost numbers of these fields. Which
fields are even, which are odd?

(ii) We define a Poisson bracket

{F,G} =

∫
d4x

(
δRF

δφ̄a(x)

δLG

δφa(x)

)
−
(

δRF

δφa(x)

δLG

δφ̄a(x)

)
(2)

=

∫
d4x

(
δRF

δĀµ(x)

δLG

δAµ(x)
− δRF

δAµ(x)

δLG

δĀµ(x)
+

δRF

δη̄(x)

δLG

δη(x)
− δRF

δη(x)

δLG

δη̄(x)

)
. (3)

Here,
δL/R

δφa stands for the derivative acting from the left, resp. from the right.

At zeroth order in the anti-fields, the BV action should is given by S0. To first order, the extended
action is defined to generate Gauge-BRST transformations of the field Aµ through the Poisson bracket,
i.e.

δSA
µ = {S,Aµ(x)} = ∂µη. (4)

Show that the action

S = S0 −
∫

d4xĀµ∂
µη(x) (5)

generates this transformation.

(iii) Terms in higher anti-field number in S are chosen such that S satisfies the classical master equation,

{S, S} = 0. (6)

Convince yourself that this equation is actually non-trivial (unlike in the case of the Hamiltonian
Poisson bracket). (Hint : Show that δLX

δφ = (−)gh(φ)(gh(X)+1) δRX
δφ . Also, can you guess what the ghost

number of a functional of the fields is?) Afterwards, show that (4) already does the job. It is therefore
our BV extended action.

(iv) Gauge fixing in the BV formalism means that we want to set the anti-fields to specific values. It is done

using a functional Ψ, the gauge fixing fermion, by declaring φ̄a = Ψ(φ)
δφa . For this to make sense, show

that gh(Ψ) = −1. However, Ψ(φ) should not depend on anti-fields, so at this point, it is impossible to
construct such a Ψ.

To fix this, we extend our field space even more. We introduce a field η∗ with gh(η∗) = −1 together
with a corresponding anti-field η̄∗. Wo want to include it to the action, but in a trivial way. Since S



should have ghost number zero, we introduce yet another pair (B,B∗), with gh(B) = 0 and couple it
to η̄∗, using

St =

∫
d4xB(x)η̄∗(x). (7)

Defining Stot = S + St obviously does not change dynamics, since the equations of motion for the new
fields are trivial. However, using η∗, we can now write down a Ψ of proper ghost number.

(v) Apart from the above, the only condition on Ψ is that it is such that the gauge fixed action has a
propagator. Consider

Ψ =

∫
d4x η∗(x)(−B(x)

2ξ
+ F (A, x)), (8)

where, for example F (A, x) = ∂µA
µ. Write down the gauge fixed action SΨ, which is given by

SΨ(φa) = Stot(φ
a, φ̄a =

δLΨ

δφa
). (9)

You should find

SΨ = S0 −
∫

d4xd4y η∗(x)
δF (A, x)

δAµ(y)
∂µη(y)−

∫
d4xB(x)

(
B(x)

2ξ
− F (A, x)

)
. (10)

When you replace B by its solution to the equation of motion, you should obtain a familiar action.

2 BV quantization - abelian 2-form theory

We give an example for a reducible theory. Consider a 2-form field A taking values in some abelian Lie
algebra with field strength F = dA. The classical action is then

S0 = −1

2

∫
F ∧ ∗F, (11)

where the ∗-operation is the Hodge dual. In the following we will keep using the coordinate free notation.
If you prefer to work with indices you may want to use the identity A ∧ ∗B = g(A,B)dV , where g is the
metric and dV is the volume form.
Since d2 = 0 this action is clearly invariant under

δA = dσ1, (12)

where λ1 is some one-form. Note however that the gauge transformations are itself redundant. We have
δA = 0 for σ1 = dσ0. How many degrees of freedom (propagating as well as non-propagating) does this
theory have? Since we have a first stage reducible theory we have to introduce ghosts C1 and ghosts for ghosts
C0 (the labels remind us that we deal with 1- and 0-forms). Or set of fields is therefore φA = (A,C1, C0)
with ghost numbers (0, 1, 2).
As in the preceding exercise we extend the set of fields by a set of anti-fields φ∗A = (A∗, C∗

1 , C
∗
0 ) of ghost

number (−1,−2,−3). The classical BV-action S should generate gauge transformations

δA = dC1 + ..., δC1 = dC0 + ..., δC0 = 0 + ... . (13)

Show that the extended action

S = S0 + S1 = S0 +

∫
A∗ ∧ ∗dC1 +

∫
C∗

1 ∧ ∗dC0 (14)

generates (13) and already solves the classical master equation.
To gauge fix this action we again introduce trivial pairs. Because we gauge-fix two fields A and C1 we need
at least two trivial pairs. We fix A using (B1, λ1) with ghost numbers (−1, 0) and C1 using (B0, λ0) with
ghost numbers (−2,−1). The reason for the particular ghost numbers is that the Bi serve as anti-ghosts for
the Ci, so they have opposite ghost numbers. The λi are Lagrange multipliers to fix A and C1 and therefore
have opposite ghost numbers with respect to the fields they fix. The action for the trivial pairs now reads

St =

∫
B∗

1 ∧ ∗λ1 +

∫
B∗

0 ∧ ∗λ0. (15)



We pick the following gauge fixing fermion:

Ψ =

∫
dB1 ∧ ∗A+

∫
dB0 ∧ ∗C1. (16)

Convince yourself that it has the right properties and imposes a Lorenz gauge on both A and C1. You should
find

SΨ = −1

2

∫
F ∧ ∗F +

∫
dB1 ∧ ∗dC1 +

∫
dB0 ∧ ∗dC0 +

∫
A ∧ ∗dλ1 +

∫
C1 ∧ ∗dλ0. (17)

Unfortunately we are not done yet. The redundancy of the fields A and C1 is fixed through a delta-function.
However there is now a redundancy in the anti-ghost B1, namely

δB1 = dσ0. (18)

So we need still another trivial pair to fix B1. Mimic what we have done for A and C1, i.e. introduce a
trivial pair with appropriate ghost numbers, add a term to the gauge fixing fermion to eliminate the gauge
degree of freedom and derive the gauge-fixed action.

3 Finite dimensional BRST-BV (last year’s exam problem)

Consider the following integral

〈f〉 =

∫
R2

dxdye−S0(x,y)f(x− y), (19)

with action S0(x, y) = 1
2 (x− y)2.

(i) (2pt) Identify the “gauge” symmetry of this action – write down explicitly the transformation(s) under
which the action is invariant.

(ii) (5pt) Use the Faddeev-Popov trick to gauge fix this action, with F (x, y) = x+ y+G(x− y) as a gauge
fixing condition, where G(z), z ∈ R, is some arbitrary regular function. You should find

S0 + Sgh =
1

2
(x− y)2 + Cη∗η, (20)

with some (specific) constant C, and (η∗, η) a pair of fermionic variables. The complete gauge fixed
integral should be ∫

dxdydη̄dηf(x− y)e−S0−Sghδ(F (x, y)) (21)

(iii) (2pt) Average the Gauge fixing condition F (x, y) = c over c with the weight function e−
1
2 c

2

. You
should find

Stot =
1

2
(x− y)2 + Cη∗η +

1

2
F 2. (22)

(iv) (4pt) Write down the concrete expressions of the BRST transformations δBφ = ζs(φ) for all the four
variables, φ = (x, y, η, η∗). Show that Stot is invariant under them.

(v) (3pt) The BRST transformations do not yet square to zero. Use∫
e−

1
2 b

2+ibF db ∼ e−
1
2F

2

(23)

to integrate in a Lagrange multiplier b and write down the new BRST transformations. Show that
δ2
B = 0.

(vi) (3pt) Go back to the original S0. Find its (minimal) BV extended action and show that it satisfies the
classical master equation (without using the equations of motion).


