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Exercises for Quantum Field Theory (TVI/TMP)

Problem set 1 - Solution

1 Gamma matrices

(i) This is a straightfoward exercise with matrix multiplication. It is useful to remember that the block
matrices can be multiplied just as the usual matrices but we must be careful about the order of the
matrix elements. Choosing µ = 0 = ν the Clifford algebra relation is{

γ0, γ0
}

= 2(γ0)2 = 2η001 = 2 · 1 (1)

so we should simply verify that (γ0)2 = 1. With the explicit expression for γ0 we have(
0 1

1 0

)(
0 1

1 0

)
=

(
1 0
0 1

)
= 1 (2)

so the first Clifford algebra relation is indeed satisfied. For µ = 0 and ν = j we have(
0 1

1 0

)(
0 σj
−σj 0

)
+

(
0 σj
−σj 0

)(
0 1

1 0

)
=

(
−σj + σj 0

0 σj − σj

)
= 0 (3)

which are another three relations of the Clifford algebra. Finally, for µ = j and ν = k we have

γjγk+γkγj =

(
0 σj
−σj 0

)(
0 σk
−σk 0

)
+

(
0 σk
−σk 0

)(
0 σj
−σj 0

)
=

(
−σjσk − σkσj 0

0 −σjσk − σkσj

)
(4)

Pauli’s σ-matrices satisfy the useful identity

σjσk = iεjklσl + δjk1 (5)

so in particular σjσk + σkσj = 2δjk1 and we find

γjγk + γkγj = −2δjk

(
1 0
0 1

)
= 2ηjk1 (6)

so we see that the remaining Clifford algebra relations are indeed satisfied.

(ii) The defining relations of the Clifford algebra can be understood in the following way: for µ = ν the
relation tells us that the square of γµ is ±1 depending on the signature of the metric: +1 for µ = 0 and
−1 for µ = 1, 2, 3. On the other hand, if µ 6= ν, the right-hand side is zero so γµ and γν anticommute,
γµγν = −γνγµ for µ 6= ν.

Consider now an arbitrary string of γ matrices

γµ1γµ2 · · · γµk . (7)

Let’s look first at all the γ matrices with µj = 0 (if there are any). Using the commutation relations
we can move all of these to the right, picking a minus sign everytime we encounter γµ with µ 6= 0.
Once they are all on the right, we can use the relation (γ0)2 = 1 to eliminate all of them except for at
most one. Now we can repeat the procedure with γ1 etc. In the end, we see that an arbitary product
of γ matrices can be reduced to a product of at most 4 matrices γ0, γ1, γ2 and γ3 with each of the
gamma matrices appearing either once or not appearing at all. The total number of these products is
24 = 16 which is indeed the dimension of the space of 4× 4 matrices.



Looking at the list in the exercise, each line represents all the products with 0, 1, 2 etc. matices: the
product of no gamma matrices is just the identity matrix. Next there are 4 first powers of gamma matri-
ces. If we have a product of two gamma matrices γµ and γν with µ 6= ν, we can always antisymmetrize
it:

γµγν =
1

2
(γµγν −γνγµ) +

1

2
(γµγν +γνγµ) =

1

2
(γµγν −γνγµ) +ηµν1

µ 6=ν
=

1

2
(γµγν −γνγµ) ≡ γµν . (8)

This are exactly the matrices given on the third line and there are
(
4
2

)
of them, i.e. 6. One can proceed

similarly with products of 3 and 4 different gamma matrices and one finds exactly the matrices given
on the last two lines of the list. In total we have

1 + 4 + 6 + 4 + 1 = 16 (9)

matrices as we wanted to see. Note: the linear independence can be checked either directly or by using
the trace formulas (exercise: check that all products of γ matrices listed above are traceless except for
1).

(iii) The matrix γ5 = iγ0γ1γ2γ3 is the last matrix of the list (up to an overall factor). Let us have a look
at the expression

− i

4!
εµνρσγµγνγργσ. (10)

This expression has 4! = 24 non-zero terms, one for each permutation of (0, 1, 2, 3). Exchanging any
two indices of εµνρσ changes the sign. As discussed before, the same is true for the product γµγνγργσ
if all four indices (µ, ν, ρ, σ) are different which they are. The two signs therefore cancel and we find
24 times the same term,

− i

4!
× 4!× ε0123γ0γ1γ2γ3 = +iγ0γ1γ2γ3 (11)

which is what we wanted to show. The anticommutativity is easy: we have

γ5γµ = iγ0γ1γ2γ3γµ = (−1)3iγµγ0γ1γ2γ3 = −γµγ5. (12)

When moving γµ to the left, we encountered three times γν with ν 6= µ which produced three minus
signs and once γµ itself which does not produce any additional sign. To find the square of γ5, we write

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3 = −(γ0)2(γ1)2(γ2)2(γ3)2 = +1. (13)

We first moved γ0 to the left, exchanging it with γ3, γ2 and γ1, producing three signs. Afterwards γ1

produced two signs and γ2 one sign. In the last step we used the formula (γµ)2 = ±1 (three times
minus and once plus).

(iv) We see from our explicit matrix representation that indeed (γ0)† = γ0 while (γj)† = −γj (where we
used the hermiticity of Pauli’s σ matrices). But we also know from the Clifford algebra relations that
γ0 commuties with self while it anticommutes with γj , j = 1, 2, 3. Combining these two facts, we
indeed see that

γ0(γµ)†γ0 = γµ. (14)

We also see easily that γ5 is hermitian:

(γ5)† = −i(γ3)†(γ2)†(γ1)†(γ0)† = −iγ0(γ3γ2γ1γ0)γ0 = iγ0γ1γ2γ3. (15)

This also shows (with + − −− metric) that we cannot find a representation of γµ such that γj are
hermitian: the Clifford algebra relations imply that (γj)2 = −1 which is never satisfied by a hermitian
matrix. Any hermitian matrix has real eigenvalues so its square needs to have non-negative eigenvalues
which is obviously not true for −1.

2 Dirac equation

(i) Writing down indices of vectors and matrices explicitly, the Dirac equation looks like

i(γµ)jk∂µψ
k(x)−mδjkψ

k(x) = 0. (16)

where j, k = 1, . . . , 4 are the spinor indices where the gamma matrices act. These are quite different
from the vector index µ = 0, . . . , 3. For example, in d dimensional space-time with d even the vector



index µ would have values µ = 0, . . . , d−1 while the space of Dirac spinors is complex 2
d
2 -dimensional.

For d = 3 + 1 these two dimensions agree.

Following the hint, we multiply the Dirac equation on the left by the conjugate operator (−iγν∂ν−m).
We find

0 = (−iγν∂ν −m)(iγµ∂µ −m)ψ =
(
γνγµ∂ν∂µ −����imγµ∂µ +����imγν∂ν −m2

)
ψ (17)

sym
=

(
1

2
(γνγµ + γµγν)∂µ∂ν −m2

)
ψ (18)

Clif
=
(
ηµν∂µ∂ν −m2

)
ψ (19)

We first symmetrized the product of gamma matrices over µ and ν because it is contracted with a
symmetric object ∂µ∂ν . In the following step we used the Clifford algebra relations. The resulting
equation does not have any gamma matrices anymore, so the scalar operator (∂2 − m2) has to kill
each component of ψ independently, i.e. each component of ψ satisfies the Klein-Gordon equation.
Klein-Gordon equation expresses the usual relation between energy and mass (E2 = m2 + ~p2) via the
identification pµ = i∂µ.

(ii) The conjugate spinor ψ̄ is defined as
ψ̄ = ψ†γ0. (20)

where † denotes the hermitian conjugate, i.e. complex conjugate and transpose. The hermitian conju-
gate of the Dirac equation is

0 = ψ†
(
−i(γµ)† ~∂µ −m

)
≡ −i∂µψ†(γµ)† −mψ† (21)

Note that hermitian conjugation reverses the order of the gamma matrix and the Dirac spinor ψ so if
we want to keep ∂µ and γµ together we need to differentiate on the left which is denoted by the arrow.

To have an equation for ψ̄ and to get rid of the hermitian conjugates of the gamma matrices we multiply
the equation from the right by γ0:

0 = ψ†
(
−i(γµ)† ~∂µ −m

)
γ0 = ψ†γ0

(
−iγµ ~∂µ −m

)
≡ ψ̄

(
−iγµ ~∂µ −m

)
(22)

where we used the identity from the first exercise.

(iii) The least action principle states that the classical equations of motion are obtained as extrema of the
classical action

S =

∫
d4xL(ψ(x), ψ̄(x)). (23)

To find the extrema, we vary the action with respect to ψ and ψ̄ and require the variation of the action
to vanish:

0 = δS =

∫
d4x

[
δψ̄(iγµ∂µ −m)ψ + ψ̄(iγµ∂µ −m)δψ

]
. (24)

In the second term we can integrate by parts, neglecting the boundary term (assuming for example
that the variations vanish at the boundary – we can always restict to such variations). We find

0 = δS =

∫
d4x

[
δψ̄(iγµ∂µ −m)ψ + ψ̄(−iγµ ~∂µ −m)δψ

]
. (25)

If we have a real action depending on a complex quantity, we can think of the complex quantity and
its complex conjugate as being two independent quantities. This means that we immediately find the
Dirac equation and its conjugate as classical equations of motion:

(iγµ∂µ −m)ψ = 0 ψ̄(−iγµ ~∂µ −m) = 0. (26)

which is exactly the Dirac equation and its conjugate.



Independence of ψ and ψ̄ If you don’t know that you should treat ψ and ψ̄ as independent, you
can always do a honest calculation with real quantities: the real part and the imaginary part of ψ are
clearly independent. Let us write abstractly

0 = δS[φ, φ̄] =

∫
d4x

[
∂L
∂φ

(δφR + iδφI) +
∂L
∂φ̄

(δφR − iδφI) +
∂L

∂(∂µφ)
∂µ(δφR + iδφI) +

∂L
∂(∂µφ̄)

∂µ(δφR − iδφI)
]

(27)
so the Euler-Lagrange equations are

0 = ∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

+ ∂µ

(
∂L

∂(∂µφ̄)

)
− ∂L
∂φ̄

(28)

from the variation with respect to φR and

0 = ∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ̄)

)
+
∂L
∂φ̄

(29)

from the variation with respect to φI . We see that the sum and the difference of these equations is

0 = ∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

(30)

and

0 = ∂µ

(
∂L

∂(∂µφ̄)

)
− ∂L
∂φ̄

(31)

which are exactly the Euler-Lagrange equations that we would get if we treat φ and φ̄ as independent.

3 Noether currents for Dirac equation

(i) In this problem we are assuming that there exists a certain symmetry transformation acting on the
fields φj and their derivatives and such that the action does not change. At the level of the Lagrangian
density it is enough if under such transformation it changes by a total derivative: using the usual
assumption about boundary terms changing the Lagrangian density by a total derivative does not
change the equations of motion. Usual space-time symmetries are exactly of this kind, they don’t leave
the Lagrangian density invariant but instead change it by a total derivative.

For the derivation of Noether’s theorem we also need to assume that we have a continuous group
of symmetry transformations, in particular we need to be able to do infinitesimally small symmetry
transformations. This being said, let us assume that we have a symmetry such that the Lagrangian
density changes as

L(φj + εδφj , ∂(φj + εδφj)) = L(φj , ∂φj) + ε∂µK
µ(φj , ∂φj) +O(ε2). (32)

where ε is an infinitesimal parameter. We want to see that the current

Jµ ≡ ∂L
∂(∂µφj)

δφj −Kµ (33)

is conserved if the equations of motion are satisfied (this assumption is important!). The equations of
motion derived from the action with Lagrangian density L are the Euler-Lagrange equations,

∂µ

(
∂L

∂(∂µφj)

)
− ∂L
∂φj

= 0. (34)

The conservation of the current Jµ is the continuity equation

0
?
= ∂µJ

µ = ∂µ

(
∂L

∂(∂µφj)

)
δφj +

∂L
∂(∂µφj)

∂µδφj − ∂µKµ. (35)

In the first term we can use the Euler-Lagrange equations and we find

∂µJ
µ =

∂L
∂φj

δφj +
∂L

∂(∂µφj)
∂µδφj − ∂µKµ. (36)

But the right-hand side vanishes by our assumption on invariance of L: these terms are exactly O(ε)
terms of (32). This finishes the proof of Noether’s theorem.



(ii) We now apply the previous discussion to Dirac’s equation. It is easy to see that the Lagrangian is
invariant under the transformation

ψ(x)→ e−iqαψ(x) (37)

where q is the electric charge of the particle and α is the parameter of the U(1) symmetry trasformation.
So far only their product qα enters but if we had particles with different electric charge, the difference
between these would be important. Choosing α to be small (α ∼ ε), we can read off the infinitesimal
transformation of ψ and ψ̄,

δψ = −iqψ, δψ̄ = +iqψ̄. (38)

The Lagrangian is invariant on nose so Kµ ≡ 0. The conserved current is

Jµ =
∂L

∂(∂µψ)
δψ +

∂L
∂(∂µψ̄)

δψ̄ (39)

= ψ̄iγµ(−iqψ) = qψ̄γµψ. (40)

We treat ψ and ψ̄ as independent fields. We could again split them to real and imaginary parts as
before and we would find the same answer. We also used the matrix notation. For those who are not
comfortable with it yet, you can just write all the equations in the components and again you should
find the same result. Not that it is convenient to use the following rule: whenever I remove any field
from the Lagrangian by taking the partial derivative, I should replace it by its variation at exactly the
same place including all the index structure.

Note also that since our form of the Lagrangian didn’t have any derivatives of ψ̄, the conjugate terms
in the formula for the Noether current didn’t contribute.

Finally, we should verify the conservation of the current. We have

∂µJ
µ = q(∂µψ̄)γµψ + qψ̄γµ∂µψ (41)

Dirac
= imqψ̄ψ − imqψ̄ψ = 0. (42)

where we used the Dirac equation in the form

γµ∂µψ = −imψ, ∂µψ̄γ
µ = imψ̄. (43)

4 Local symmetries and QED

(i) We saw that Dirac’s equation was invariant under U(1) transformations

ψ(x)→ e−iqαψ(x) (44)

for α independent of the position. But it is not invariant if α depends on x:

(iγµ∂µ −m)e−iqα(x)ψ(x) = e−iqα(x)(iγµ∂µ −m)ψ(x) + q(∂µα)γµe−iqα(x)ψ(x). (45)

If there wasn’t for the last term and if ψ(x) solved the Dirac equation, also the transformed ψ(x) would
satisfy Dirac equation. But we can fix this problem by replacing ∂µψ by

Dµψ = (∂µ + ieqAµ)ψ (46)

where Aµ(x) is a new field. The constant e is introduced for future convenience (it has a physical
meaning of the elementary charge). The Lagrangian density after this replacement is

L = ψ̄(iγµ∂µ − eqγµAµ −m)ψ (47)

Let’s see how this modified action transforms under the local U(1) transformation if we also simulta-
neously transform the field Aµ as

Aµ → Aµ +
1

e
∂µα (48)

(note that this is trivial if α is constant). We have

L → ψ̄eiqα(iγµ∂µ − eqγµAµ + qγµ(∂µα)−m)e−iqαψ (49)

= ψ̄��eiqα���e−iqα(iγµ∂µ +�����qγµ(∂µα)− eqγµAµ −�����qγµ(∂µα)−m)ψ = L (50)

so the Lagrangian is indeed invariant under the local gauge transformations.



(ii) The covariant derivative transforms as

Dµψ = (∂µ + ieqAµ)ψ → (∂µ + ieqAµ + iq(∂µα))e−iqαψ = e−iqα(∂µ + ieqAµ)ψ = e−iqαDµψ (51)

so it transforms exactly in the same way as ψ itself. This is one of the main reasons for introducing
these covariant derivatives.

(iii) For this we just write (47) as

L = ψ̄(iγµ∂µ −m)ψ − eqAµψ̄γµψ = ψ̄(iγµ∂µ −m)ψ − eAµJµ (52)

where Jµ is the Noether’s current derived before. Note that things are not so simple in general, if we
considered instead of Dirac fermion a charged scalar field satisfying the Klein-Gordon equation, there
would be also terms containing AµA

µ in the action!

(iv) By the definition of the curvature tensor we have

ieqFµν(x)ψ(x) = Dµ(Dνψ)−Dν(Dµψ) (53)

= (∂µ + ieqAµ)(∂ν + ieqAν)ψ − (µ↔ ν) (54)

=���∂µ∂νψ + ieq(∂µAν)ψ +�����ieqAν∂µψ +�����ieqAµ∂νψ +������
(ieq)2AµAνψ − (µ↔ ν) (55)

= ieq(∂µAν − ∂νAµ)ψ (56)

We can therefore identify
Fµν(x) = ∂µAν(x)− ∂νAµ(x). (57)

Most terms cancelled in the antisymmetrization, in particular all the derivatives of ψ. This is an
important property of Fµν . It is easy to see that Fµν is invariant under the gauge transformations:

ieqFµνψ = DµDνψ −DνDµψ → D′µD
′
νψ
′ (58)

= D′µD
′
νe
−iqαψ − (µ↔ ν) (59)

= e−iqαDµDνψ − (µ↔ ν) (60)

= ieqF ′µνe
−iqαψ (61)

so F ′µν(x) = Fµν(x). One can also do it directly from the formula (57) by plugging in the transformation
of Aµ(x).

(v) The Euler-Lagrange equations for ψ and ψ̄ as just like before and we find the charged version of Dirac’s
equation

(iγµDµ −m)ψ(x) = (iγµ∂µ − eqγµAµ −m)ψ(x) = 0 (62)

as well as its conjugate

ψ̄(x)(−iγµ ~Dµ −m) = ψ̄(x)(−iγµ ~∂µ − eqγµAµ −m) = 0 (63)

Note that the covariant derivative acts on ψ̄ with the opposite charge:

Dµψ̄ = ∂µψ − ieqAµψ̄ (64)

which we can see also by Dirac conjugating the equation (46). To find the equations of motion for the
gauge field Aµ, we first vary

δ

∫
d4x

(
− 1

4FµνF
µν
)

= − 1
2δ

∫
d4x [(∂µAν)(∂µAν)− (∂µAν)(∂νAµ)] (65)

= −
∫
d4x [(δ∂µAν)(∂µAν)− (δ∂µAν)(∂νAµ)] (66)

= −
∫
d4x(δ∂µAν) [(∂µAν)− (∂νAµ)] (67)

= −
∫
d4xFµνδ∂µAν (68)

so
∂L

∂(∂µAν)
= −Fµν . (69)



We also have
∂L
∂Aν

=
∂(−eqAµψ̄γµψ)

∂Aν
= −eqψ̄γνψ = −eJν (70)

so finally the Maxwell’s equations (Euler-Lagrange equations for the Lagrangian we are considering)
are

0 = ∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= −∂µFµν + eJν . (71)


