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Consider the case of a quantum mechanical system confined to a one dimensional box of size
L. The Hamiltonian for the system is taken to be
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H, 6 andla are quantum mechanical operators, with p and a satisfying the usual

commutation relation
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[p,a] = —ih.

In what follows we will work in the Heisenberg picture, where states are indepen-
dent of time. Since the partition function we seek to evaluate involves a trace
over all states of the system, we are at liberty to choose a basis for the operators
and states which will be convenient for our purpose. Finally, we impose periodic
boundary conditions on wave functions in our box. The basic idea underlying the
path integral approach to quantum mechanics is to replace a calculation involving
operators and states by an alternative but equivalent calculation involving just
commuting numbers. The fundamental operators in our current problem are the
momentum operator p and the coordinate operator a We can always replace one
of these operators with a commuting number if we arrange that the operator acts
on one of its eigenvectors. For a particle confined to a one dimensional box of
length L with periodic boundary conditions, the possible eigenvalues of the coor-
dinate operator, q, are the continuous numbers ¢ € [—L/2, L/2], while the possible
eigenvalues of the momentum operator, 6, are discrete, p = 2wnh/L, with n an
integer, as we have seen in 7. We have
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with the following orthogonality and completeness relations,
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The normalizations are chosen so that the discrete sum over p is correctly weighted
to become an integral in the limit I — oco. In this same limit, the discrete ¢ function
defining (p | p) is also correctly weighted to become d(p — p’). The transition
between complete basis vectors | ¢) and | p) is given by the scalar product

= ea/h
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However, 5 anda do not commute, and it is thus not possible to have simultaneous
eigenvectors and eigenvalues of p and 9.

Consider now applying H to a state | p) or a state | ¢). H is a sum of two terms.
The kinetic term depends on the operator B only, so when applied to | p) this term
becomes a commuting number term
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Similarly the potential term depends on the operator g only, so when applied to
| ¢) this term also becomes a commuting number term

V@) g =V(g)lq)

The commutation relation for q and B however implies that it is not possible
to find a state which is simultaneously an eigenvector of both p and a Thus
although we can arrange that either the kinetic or potential term can be made into
a commuting number term by acting either on | p) or | ¢) it is not possible that
both simultaneously be made into commuting number terms.



11.1.1 Phase Space Path Integral

To address the problem just described we adopt an approach in which we act ﬁrst on
states | p) then on states | g). We begin by considering the operator exp(— (T+V))
which is the fundamental object of interest. We anticipate a little here by replacing
0 by € which, as we shall see latter, needs to be taken small. We would like now to
act with this operator on either a state | p) or | ¢) and replace respectively either
the operators f)\ or a with their corresponding eigenvalues. This is not immediately
possible however, since the exponential function is not a simple function as was the
Hamiltonian. We can replace an operator with its eigenvalue only so long as it is
the rightmost operator acting on the corresponding eigenvector. The exponential
function (when expanded in power series) will give us many different orderings of
operators, and only a few of the many terms which occur in this series will be in
the correct rightmost positions. The simplest solution to this problem is to use
the Baker Cambel Hausdorf formula which we generated in chapter 6 to reorder
operators in the exponential. We express the result we require as a theorem

Theorem 11.1 The term 6*5(9”\/) is given by
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This theorem gives us a particular splitting of the exponential of the Hamiltonian
where terms depending only on p are cleanly separated from terms depending only
on g. The error we make in so separatlng terms is of O(e®). In order to make_this
error small we must make e small. i sonids to evaluate Z = Tre 1. A
direct splitting using the theorem is of no use since 3 is not necessarily small, and
the error we make will also not necessarily be small. However we can proceed in
steps. Define € as

where n is an integer. Then
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These manipulations result in splitting the exponential e 1 into an interleaved
product of n factors exp(—eT) and n factors exp(—eV). The error we make in this
process is nO(€*) = 32°0(n~?). Since n is a free parameter in this procedure, we
are free to take it as large as we like. In the limit n — oo the error term will go to
zero, and we have achieved a splitting of the original exponential operator
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At this point we are still working with operators, but we can now insert a com-
plete set of states between each two terms in the product and convert the problem
to one with just commuting numbers. Immediately to the right of each factor
exp(—eT) we insert the complete set of states
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while immediately to the right of each factorexp(—eV) we insert the complete set
of states,
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Since we actually have n factors of each kind, we have to be careful to label the
different insertions to the right of each different term,
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To simplify the notation at this point, we introduce the quantity [ [dpdq] as a
shorthand way of indicating the integrations over complete sets of states which we
have to perform,
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The extra factor 1/27h included here for each pair py, gx produces a dimensionless
integration measure for that pair.

Consider now the integrand. This still involves operators, but now each oper-
ator acts on a eigenstate immediately to its right. We can therefore replace each
operator with its corresponding eigenvalue.
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Since the exponentials in the integrand are now just numbers we can collect them
into a single exponential exp[3 71—y T(px) + V(qx)]. In addition we substitute the
scalar product for the brakets (p; | ¢;). This then leads to the simple expression
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The factor (2wh)™ has cancelled with the denominator of the in the scalar product
(pi | gj)- It is convenient to introduce a new redundant variable ¢, = qo, so that
we can rewrite the above expression in the compact form
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In generating this form for the partition function we have fulfilled our basic aim
to replace a problem involving operators and states with a problem involving com-
muting numbers. Our calculation of the partition function is now seen to reduce to
that of evaluating a large multidimensional integral, and we find that the quantum
problem we began with is now reduced to a problem in the same basic form as that
of evaluating a canonical partition function for a classical system.

11.1.2 Feynman-Kac Formula

If the volume of our quantum mechanical system tends to infinity, so that the
sum over the momenta p; can be replaced by integrals, we can further simplify
the above expression for the partition function. Indeed since T'(p) = ﬁpz, the p
integral is just a Gaussian integral of the form

dm a2 1 b2
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for each py, with a and b real numbers and a > 0. This formula follows directly
from the Gauss integral formula by a shift x — z + £b. Thus we can perform the
pr integral explicitly for each k leading to
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This is the celebrated Feynman-Kac formula for the path integral representation
of the partition sum.
To illustrate how the path integral works let us apply it to the by now familiar

one-dimensional harmonic oscillator with Hamiltonian H = --p? + %zqz. Substi-
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tuting this Hamilton into the phase space path integral expression for the partition
sum a performing the Gaussian integral over the momenta p we end up with
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where w? = . Since this action is quadratic in g, we can write as a bilinear form

in a R™. For this we introduce the vector ¢ = (qo, -+ ,¢n—1) and a n X n matrix

(a -1 0 - 0 —1\
-1 a -1 0 0 0
m 0 -1 a -1 0 0 0
M=—
ch?
0 0 0 -1 a -1
\=1 0 0 -1 a
with
a =2+ €ehw

The path integral representation of the partition sum of the one-dimensional har-
monic oscillator is thus just the multidimensional Gauss integral
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This integral can evaluated along the same way as the usual Gauss integral. Here
we prove a slightly more general formula which will be used in the sequel.

Result 11.2
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where M;; = M;; and M;; is assumed to be real.

Proof. The volume element dx;...dxr, and the scalar product will remain un-
changed if the vectors x,y undergo a orthogonal transformation x — x’ = Rx,
where the matrix R satisfies the condition R’R = | where R” is the transpose of
R. Since the matrix M in the problem is symmetric there’s a matrix R such that

RTMR = D with D diagonal. We suppose all the diagonal entries of D are non-zero.
Then,
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where B =, Ri;B;, x; = > Rijz; and \;, = 1,...,n are the eigenvalues of M.
But we have already seen that
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Thus the result holds with vdet M = \/A; ...\, and (BM™'B) = Zfil(Bz)Q% O
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To complete our calculation we need to evaluate the determinant of M. For this
we expand the determinant in the first column

detM = adetl,_; —2detl,,_5 — 2,

where |,_, is obtained from M by deleting the first p rows and columns. Let
us begin by calculating detl,, & < n — 1. For this we expand det |l in the first
row which leads to the recursion relation detl, = adetl,_; — det l,_o with initial
conditions det |y = 1 and detl; = a. This relation is solved by

=—2’ where cosh 2 = &
sinh (&) 2 2

Substituting this result into the expression for det M and using the identity 2 cosh a sinh b =
cosh(a + b) + sinh(b — a), we then end up with the simple result

det M = 4 sinh? (2—“) .

We are now ready to evaluate the path integral completely. Performing the Gaus-
sian integral it is not hard to see the factors of ¢, h, m and 27 all cancel out so
that the final result reads simply
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However, we can bring this result in a more familiar form by expressing p in terms
of a. We have
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We have seen in the example of the harmonic oscillator that although it is not
clear how to define the path integral measure in the continuum limit the final result
is perfectly well defined when n — oo (or € — 0). In what follows we will give
a formal definition of the continuum limit. To do so we first focus on the first
argument of the exponential. According to what we have just said the difference



(g1 — qr)/i€h becomes to the derivative of ¢(t) with respect to imaginary time

as € tends to zero (n — oo). Similarly ek ), — fom dr as € — 0. Thus the path
integral expression for Tre™"H takes the simple form
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where
hi
m . 2
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0
is the action of the point particle in imaginary time ¢ = —i7. As an illustration we

can again refer to the harmonic oscillator treated above. The Lagrange function
for this system is found as usual via the Legendre transform

L(q,q) = H(p,q)—pq
m .
_ E(_q2+w2q2)

Note that we have defined the action with a global minus sign compared to the
usual convention. This is just for later convenience and does not affect the dynam-
ics of the system. Next we analytically continue the time variable to the negative
imaginary axis, ¢ = —i7. Using the identity % = —i%, the imaginary time La-
grange function is then given by
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where the dot now symbolizes the derivative with respect to 7 which, in turn,
ranges for 0 to 2. In order to recover the discrete version of the path integral we
discretize the parameter 7 into n steps with step size € = % The action functional
Selql = [ drL(q,¢) then takes the form of a discrete sum
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The constant C in the contiuum version of the path integral is formally infinite
but can be absorbed in the measure [dg| as we have seen in the example of the
harmonic oscillator.

10.3 Real Time Path Integral

So far we have presented the path integral representation of the finite temperature
partition sum Tre #". On the other hand, in our presentation of quantum field
theory we saw that the partition sum can written as the trace of the evolution
operator U(T, 0) evaluated for imaginary time T' = —ihf. The question which we
will now address is whether there is a path integral expression for this evolution
operator for real 7. On a formal level this is easily seen to be the case. Indeed
starting form the phase space path integral expression we can implement evolution
in real time simply by ”rotating” € by a phase €279, where ¢ > 0 and small
ensures the convergence of the Gaussian integrals. It is clear that the transformed
operator e " describe an infinitesimal evolution in real time. On the other hand
we can substitute € — ie in the path integral formulas. This has the effect of
multiplying the exponential by an overall factor ¢ and furthermore changes the
sign of the kinetic term since this term involves two time derivatives. Thus we end
up with the expression
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where S[g(7)] = [dt (%¢* — V(q)) is the familiar classical action for a point par-
ticle. A new issue that arises in the real time path integral concerns the boundary
conditions for ¢(t). Indeed for a real time evolution periodic boundary conditions
are not a natural choice. Rather one would fix the initial and final position of the
particle, ¢(0) and ¢(7"). The interpretation of the path integral with these bound-
ary condition is now clear: It corresponds to matrix elements of the evolution
operator U(T,0), that is

q(T)=qy
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q(0)=q;
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In order to develop a geometric interpretation of the Feynman path integral
we recall that € = 3/n where n is the number of steps introduced to discretize
the 1-parameter family of operator e ®". We have seen in section 9.8 that 3 can
be interpreted as ”imaginary time” through the identification 7' = 8h. If we
carry this interpretation over to our path integral expression we would identify €A
with an infinitesimal imaginary time while ¢ is interpreted as the value of ¢(t) at
t, = —ikeh. The above representation of the partition sum can thus be interpreted
as integrating over all possible discretized periodic paths, ¢(t), in imaginary time.
This then explains the usage of word path integral.




