(https://en.m.wikipedia.org/wiki/Fujikawa_method )

Consider the fermionic path-integral:

Di = —Xivi.

The eigenfunctions are taken to be orthonormal with respect to integration in d-dimensional space,
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The measure of the path integral is then defined to be:
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Under an infinitesimal chiral transformation, write
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The Jacobian of the transformation can now be calculated, using the orthonormality of the eigenvectors
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The transformation of the coefficients {b@} are calculated in the same manner. Finally, the quantum measure changes as
DYDY = | [ da’db’ = | [ da" dbdet *(C?),
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where the Jacobian is the reciprocal of the determinant because the integration variables are Grassmannian, and the 2 appears
because the a's and b's contribute equally. We can calculate the determinant by standard techniques:
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to first order in a(x).

Specialising to the case where a is a constant, the Jacobian must be regularised because the integral is ill-defined as written. Fujikawa
employed heat-kernel regularization, such that
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The final expression then reproduces (4 S ) .To summarise, the quantum BV
equation is (a generalisation of) a consistency condition for the ST identities.



