Studies of Quantum-Chromo-Dynamics with Collider Experiments

Prof. Dr. Otmar Biebel

Lecture:

Tuesday 8:30 - 10:00 Uhr Seminar Room H206

Tuesday 14:15 - 15:00 Uhr Seminar Room H206

Begin: Lectures: 21. April 2020

Tutorial: 21. April 2020

Tutorial:

Tuesday 15:00 - 15:45 Uhr Seminar Room H206

O.Biebel SS 2020

Topics of the Lecture

- Introduction, Motivation
- Quark Model of Hadrons
- Colour Charge and QCD
- Discovery of the Gluon, Gluon Spin
- asymptotic Freedom
- α_S Measurements
- Triple-Gluon-Coupling, Colour Factors
- Quark Mass Effects

- Quark-Gluon Differences
- Modelling of QCD Reactions
- Power Corrections
- Fragmentation Functions
- Colour Coherence Effects
- Proton and Photon Structure Functions
- at low scales: DGLAP vs. DLLA vs. BFKL

on the web:

http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_20/A_QCD_at_collider/index.html

Literature/Books 0.3

Literature/Books

A small selection of books:

Perkins

Griffith

• Halzen, Martin

• Ellis, Stirling, Webber

• Dissertori, Knowles, Schmelling

Renton

Particle Data Group

and many more!

Introduction to High Energy Physics

Introduction to Elementary Particles

Quarks & Leptons

QCD and Collider Physics

Quantum Chromodynamics

Electroweak Interactions

http://pdg.lbl.gov

Addison Wesley

Wiley&Sons

Wiley&Sons

Cambridge University Press

Oxford University Press

Cambridge University Press

O.Biebel

Details on Topics of the Lecture

- 1. Introduction, Motivation
 - (a) Quark Model of Hadrons: anomalous magnetic moment, mesons and baryons octett, structure of $SU(3)_{\rm flavour}$, problem of Ω^- baryon
- 2. Establishing QCD
 - (a) Colour Charge and QCD: experimental evidence for colour charge, structure of $SU(3)_{
 m colour}$, differences and similarities of QCD and QED
 - (b) Discovery of the Gluon, Gluon Spin: Jet structure in $e^+e^- \to q\bar{q}$, 3-jet structure for discovery of the gluon, Ellis-Karliner angle for gluon spin, phase space of 3-parton final states

- (c) asymptotic Freedom: Vacuum polarisation (QED vs. QCD), consequences of renormalisation, 3-jet rate R_3 vs. centre of mass energy, asymptotic freedom
- (d) α_S Measurement: completely inclusive observables, inclusive obervables (event shares), renormalisation scale uncertainty, collinear and infrared divergencies of 3-jet cross section, resummation vs. fixed order in α_S : NLLA vs. NLO, results for $\alpha_S(M_Z)$
- (e) Triple-Gluon-Coupling, Colour Factors of QCD: Colour factors and quark-gluon and gluon-gluon interaction, angular correlations (e.g. Nachtmann-Reiter angle) to identify triple-gluon coupling, principle of jet algorithms, measurements of colour factors

O.Biebel SS 2020

3. Identification and Impact of Partons

- (a) Quark Mass Effects: finite quark mass and 3-parton phase space, dead-cone effect, identification methods for flavour of primary quark, α_S and effects of finite quark masses, running quark mass, measurement of b-quark mass at $\sqrt{s} \equiv M_Z = 91\,\mathrm{GeV}$
- (b) Quark-Gluon Differences: identification of quark and gluon jets, differences between quark and gluon jets Čerenkov effect, Transition Radiation, Landau distribution, δ electrons
- 4. Non-perturbative Regime of Strong Interaction
 - (a) Modelling of QCD Reactions:
 parton shower, hadronisation models, Altarelli Parisi splitting functions, string and cluster and tube hadronisation models
 - (b) Power Corrections:principle effect of hadronisation on event shapevariables

- (c) Fragmentation Functions: parton fragmentation functions, scaling of fragmentation functions, longitudinal and transverse fragmentation functions, DGLAP equation
- (d) Colour Coherence Effects: colour coherence, angular ordering of gluon radiation, fragmentation at small $x\equiv 2E_{\rm hadron}/\sqrt{s}$, colour coherence and heavy quarks, string and drag effect (inter jet effects of colour coherence)
- (e) Proton and Photon Structure Functions: meaning of structure functions, (Bjorken-) scaling, pardon densities in the proton (valence and sea quarks, gluons), interpretation of proton and photon structure using DGLAP evolution equation, scaling violation
- (f) DGLAP vs. DLLA vs. BFKL: deep inelastic scattering at small x_{Bj} , diffraction and rapidity gaps, pomeron, resummation properties of DGLAP, DLLA, BFKL, experimental evidence for BFKL evolution

- 5. Open Issues of QCD
 - (a) Confinement
 - (b) Quark-Gluon-Plasma(i.e. quarks & gluon in a deconfined phase)
 - (c) Glueballs
 - (d) Proton Spin

O.Biebel SS 2020